grandprof.net

République Islamique de Mauritanie Ministère de l'Education Nationale Direction des Examens et des Concours Service des Examens

Baccalauréat 2016

Session Complémentaire

Honneur - Fraternité - Justice

Série : Sciences de la Nature Epreuve: Mathématiques Durée: 4 heures Coefficient: 6

Exercice 1 (3 points)

Pour chaque question, trois réponses sont proposées dont une seule est exacte.

N°	Question	Réponse A	Réponse B	Réponse C	
1	La suite de terme général $\left(\frac{e}{4}\right)^n$ est	décroissante	croissante	dive rgente	(0,5)
2	Si, pour tout n de \mathbb{N} , $ \mathbf{u}_{n} - 3 \le \left(\frac{1}{2}\right)^{n}$ alors	$\lim_{n\to +\infty} \mathbf{u}_{n} = 0$	$\lim_{n\to +\infty} u_n = 3$	$\lim_{n\to +\infty} \mathbf{u}_n = +\infty$	(0,5)
3	Si $s = 1 + 2 + 2^2 + \dots + 2^{2015}$ alors:	$s = 2^{2015} + 1$	$s = 1 - 2^{2016}$	$s = 2^{2016} - 1$	(0,5)
4	Si (v_n) est une suite arithmétique de raison r telle que $v_3 = 0$ et $v_5 = -6$ alors :	$\begin{cases} \mathbf{r} = -3 \\ \mathbf{v}_0 = 8 \end{cases}$	$\begin{cases} \mathbf{r} = -2 \\ \mathbf{v}_0 = -9 \end{cases}$	$\begin{cases} \mathbf{r} = -3 \\ \mathbf{v}_0 = 9 \end{cases}$	(0,5)
5	Toute suite croissante et majorée est :	non bornée	convergente	dive rgente	(0,5)
6	Soit (w_n) une suite définie sur \mathbb{N}^* telle que $0 \le w_n \le \ln\left(1 + \frac{2}{n}\right)$ alors :	$\lim_{n\to +\infty} w_n = 2$	$\lim_{n\to+\infty} \mathbf{w}_{n} = 1$	$\lim_{n\to +\infty} \mathbf{w}_{\mathbf{n}} = 0$	(0,5)

Recopie sur la feuille de réponse et complète le tableau ci-contre en choisissant la bonne réponse. Aucune justification n'est demandée :

Question n°	1	2	3	4	5	6
Réponse						

Exercice 2 (5 points)

1. On pose $P(z) = z^3 - 7z^2 + 18z - 12$ où z est un nombre complexe.

a) Calculer P(1). (0,5 pt)

b) Déterminer deux réels a et b tels que : $P(z) = (z-1)(z^2 + az + b)$.

c) Résoudre, dans l'ensemble des nombres complexes, l'équation : P(z) = 0. (0.5 pt)

2. Le plan complexe est rapporté à un repère orthonormal direct $(O; \vec{u}, \vec{v})$.

Soient les points A, B et C d'affixes respectives : $z_A = 1$, $z_B = 3 - i\sqrt{3}$ et $z_C = 3 + i\sqrt{3}$.

a) Calculer le module et un argument de chacun des nombres \mathbf{z}_{A} , \mathbf{z}_{B} et \mathbf{z}_{C} .

b) Placer les points A, B et C dans le repère (O; u, v). (0,5 pt)

3.a) Calculer le module du complexe suivant : $\frac{z_C - z_A}{z_B - z_A}$. (0,5 pt)

b) En déduire la nature du triangle ABC. (0,5 pt)

4.a) Déterminer z_D affixe du point D tel que ABCD soit un parallélogramme. Placer D. (0.5 pt)

b) Déterminer et construire l'ensemble Γ des points M d'affixe z telle que

 $\left| \frac{z - 1 - 2i\sqrt{3}}{z - 1} \right| = 1. \tag{0.5 pt}$

c) Déterminer z_I affixe du point I milieu de [AD]. Déterminer la nature du triangle IBC (0.5 pt)

grandprof.net

Exercice 3 (5 points)

Exercise 5 (5 points)	1
Soit f la fonction définie sur \mathbb{R} par: $f(x) = xe^x - e^x + x - 1$.	
Soit C sa courbe représentative dans un repère orthonormal (O; i, j) d'unité 1cm.	
1.a) Calculer et interpréter $\lim_{x\to -\infty} f(x)$ et $\lim_{x\to -\infty} (f(x) - (x-1))$.	(0,5 pt)
b) En remarquant que $f(x) = (x-1)(e^x + 1)$ calcule $r \lim_{x \to +\infty} f(x)$.	(0,5 pt)
c) Déterminer et interpréter $\lim_{x\to +\infty} \frac{f(x)}{x}$.	(0,5 pt)
2.a) Calculer f'(x) et f''(x) où f' et f'' sont respectivement la dérivée et la dérivée seconde	
de f.	(0,5 pt)
b) Calculer f'(-1) et préciser son signe.	(0,5 pt)
c) Etudier les variations de f' et en déduire le signe de f'(x).	(0,5 pt)
3. Dresser le tableau de variation f. 4. Déterminantes points d'interpretion de (C) avec les avec de coordennées puis le construire	(0,5 pt) (0,5 pt)
4. Déterminer les points d'intersection de (C) avec les axes de coordonnées puis la construire.	(0,5 pt)
5.a) Vérifier que pour tout $x \in \mathbb{R}$ on a : $f(x) = f'(x) - e^x + x - 2$. En déduire une primitive F de	(0,5 pt)
f sur ℝ. b) Calculer l'aire S du domaine plan délimité par la courbe (C) et les axes de coordonnées.	(0,5 pt)
s) carearer raine s an assume pair actions par in course (c) et les anes de coordonnees.	
Exercice 4 (7 points)	
Soit f la fonction définie sur $]0;+\infty[$ par: $f(x)=x-2-\ln x$.	
1.a) Calculer $\lim_{x\to 0^+} f(x)$ et $\lim_{x\to +\infty} f(x)$.	(1 pt)
b) Calculer et interpréter graphique ment $\lim_{x\to +\infty} \frac{f(x)}{x}$ et $\lim_{x\to +\infty} (f(x)-x)$.	(0,75 pt)
2. Calculer f'(x) et dresser le tableau de variation de f .	(0,75 pt)
3. Donner une équation de la tangente Tà (C) au point A d'abscisse $x_0 = e$.	(0,5 pt)
4.a) Montrer que l'équation $f(x) = 0$ admet exactement deux solutions α et β ($\alpha < \beta$) et que	
$0,1<\alpha<0,2$; $3,1<\beta<3,2$. Démontrer que : $\frac{e^{\alpha}}{e^{\beta}}=\frac{\alpha}{\beta}$.	(1 nt)
$0,1<\alpha<0,2$, $3,1<\beta<3,2$. Demontrer que $\frac{1}{e^{\beta}}=\frac{1}{\beta}$.	(1 pt)
b) En déduire le signe de $f(x)$ sur $]0;+\infty[$.	(0,5 pt)
5. Soit g la restriction de f sur $I = [1; +\infty[$.	
a) Montrer que g réalise une bijection de I sur un intervalle J que l'on déterminera.	(0,5 pt)
b) Calculer $(g^{-1})'(e-3)$, (On pourra utiliser la question 3)	(0,5 pt)
b) Calculet (g / (e-3), (On pourta uniseria question 3)	(-) - 1)
	(*) F *)
6. Tracer (C) et (C') courbes respectives des fonctions f et g ⁻¹ dans un repère orthonormé	
6. Tracer (C) et (C') courbes respectives des fonctions f et g^{-1} dans un repère orthonormé $(O; \vec{i}, \vec{j})$.	(0,5 pt)
6. Tracer (C) et (C') courbes respectives des fonctions f et g ⁻¹ dans un repère orthonormé	
6. Tracer (C) et (C') courbes respectives des fonctions f et g^{-1} dans un repère orthonormé $(O; \vec{i}, \vec{j})$.	(0,5 pt)

Fin.