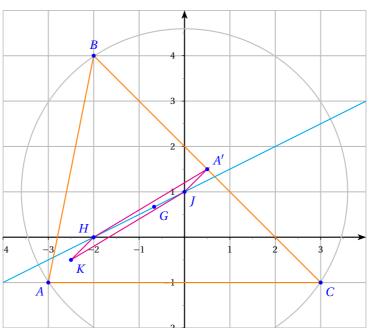
Corrigé du baccalauréat S Antilles-Guyane 16 juin 2011

EXERCICE 1 5 points
Commun à tous les candidats

1. Figure:



- **2.** $JA = |j a| = |-3 2i| = \sqrt{(-3)^2 + (-2)^2} = \sqrt{13}$. On trouve de même que $JB = \sqrt{13}$ et que $JC = \sqrt{13}$. Le cercle circonscrit au triangle ABC a donc pour centre J et pour rayon $\sqrt{13}$.
- 3. On a: $\frac{b-c}{h-a} = \frac{-5+5i}{1+i} = \frac{(-5+5i)(1-i)}{2} = 5i$. Par conséquent : $(\overrightarrow{AH}; \overrightarrow{CB}) = \arg(5i) = \frac{\pi}{2}$ (2 π), ce qui prouve que (AH) \perp (BC).
- **4.** *G* est l'isobarycentre du système {*A*; *B*; *C*} donc, d'après le cours :

$$g = \frac{a+b+c}{3} = \frac{-3-i-2+4i+3-i}{3} = -\frac{2}{3} + \frac{2}{3}i.$$

- **5.** Le vecteur \overrightarrow{HJ} a pour affixe j-h=2+i, le vecteur \overrightarrow{JG} a pour affixe $g-j=-\frac{2}{3}-\frac{1}{3}i$. On a donc $g-j=-\frac{1}{3}(j-h)$ c'est-à-dire $\overrightarrow{JG}=-\frac{1}{3}\overrightarrow{HJ}$. Ces deux vecteurs étant colinéaires, les points J, G et H sont donc alignés, ce qui se vérifie sur la figure.
- **6. a.** Notons *k* l'affixe du point *K*, alors : $k = \frac{a+h}{2} = \frac{-3-i-2}{2} = -\frac{5}{2} \frac{1}{2}i$.
 - **b.** Le vecteur \overrightarrow{HK} a pour affixe $k h = \frac{1}{2} + \frac{1}{2}$ i et le vecteur $\overrightarrow{JA'}$ a pour affixe $a' j = \frac{1}{2} + \frac{1}{2}$ i. Ces deux vecteurs ayant même affixe, ils sont égaux, et le quadrilatère KHA'J est donc un parallélogramme.

Baccalauréat S A. P. M. E. P.

EXERCICE 2 6 points
Commun à tous les candidats

a. – Il n'y a aucune forme indéterminée, d'après les limites usuelles :

- $\lim_{x \to +\infty} x e^x = +\infty, \text{ donc par somme} : \lim_{x \to +\infty} f(x) = +\infty.$ La fonction f est dérivable sur $[0; +\infty[$ comme combinaison simple de fonctions qui le sont, et, pour tout réel x > 0: $f'(x) = e^x + xe^x = (x+1)e^x$. Comme $x \ge 0$ et $e^x > 0$, alors $f'(x) \ge 0$ et la fonction f est donc strictement croissante sur $[0; +\infty[$.
- **b.** La fonction f est continue (car dérivable), strictement croissante sur $[0; +\infty[$. Elle réalise donc une bijection de $[0; +\infty[$ sur l'intervalle $\Big[f(0); \lim_{x\to +\infty} f(x)\Big] = [-1; +\infty[$. Comme $0 \in [-1; +\infty[$, l'équation f(x) = 0 admet donc une unique solution α dans $[0; +\infty[$. À l'aide de la calculatrice $\alpha \simeq 0.57$ à 10^{-2} près.
- **c.** $f(\alpha) = 0$ et f est croissante sur $[0; +\infty[$, on en déduit donc que : $-\sin 0 \le x < \alpha$, alors f(x) < 0; $-\sin x > \alpha$, alors f(x) > 0.
- **2. a.** Pour tout x > 0, on a $M(x; e^x)$ et $N(x; \ln x)$. On a donc $MN = |e^x \ln x| = e^x \ln x$, d'après le rappel de l'énoncé. Posons $g(x) = e^x \ln x$, alors g est dérivable sur]0; $+\infty[$ et pour tout x > 0, $g'(x) = e^x \frac{1}{x}$. On a donc, pour tout x > 0:

$$g'(x) > 0 \Leftrightarrow e^x - \frac{1}{x} > 0 \Leftrightarrow xe^x - 1 > 0 \Leftrightarrow f(x) = 0 \Leftrightarrow x > \alpha.$$

Ainsi, g est strictement croissante sur $]\alpha$; $+\infty[$ et décroissante sur]0; $\alpha[$. Elle admet donc un minimum en $x=\alpha$. La distance MN est donc minimale lorsque $x=\alpha$ et cette longueur minimale vaut alors $e^{\alpha}-\ln(\alpha)\simeq 2,33$ à 10^{-2} près.

- b. On a f(α) = 0, donc αe^α 1 = 0, d'où e^α = 1/α.
 La tangente à ℰ au point d'abscisse α a pour coefficient directeur le nombre dérivé de exp en α, c'est-à-dire e^α.
 La tangente à Γ au point d'abscisse α a pour coefficient directeur le nombre dérivé de ln en α, c'est-à-dire 1/α.
 D'après ce qui précède, ces deux valeurs sont égales; les deux tangentes
- **3.** *h* est dérivable sur]0; $+\infty$ [comme combinaison simple de fonctions qui le sont, et, pour tout x > 0: $h'(x) = x \times \frac{1}{x} + 1 \times \ln x 1 = \ln x$. h est donc une primitive de la fonction $\ln \sup]0$; $+\infty$ [.

ayant le même coefficient directeur, elles sont donc parallèles.

b. $\mathscr C$ est au-dessus de Γ , donc, l'aire $\mathscr A$ hachurée sur la figure est donnée (en unités d'aire) par :

$$\mathscr{A} = \int_{1}^{2} e^{x} - \ln x dx = \left[e^{x} - h(x) \right]_{1}^{2} = e^{2} - e - 2\ln 2 + 1 \approx 4,28.$$

EXERCICE 3 4 points
Commun à tous les candidats

1. L'évènement « le tireur atteint la cible au moins une fois » est le contraire de l'évènement « le tireur rate toujours sa cible ». On a donc $p_n = 1 - 0.7^n$. Par conséquent :

$$p_n \geqslant 0.9 \iff 1 - 0.7^n \geqslant 0.9 \iff 0.1 \geqslant 0.7^n \iff \ln(0.1) \geqslant n \ln(0.7) \iff$$

Baccalauréat S A. P. M. E. P.

$$\frac{\ln(0,1)}{\ln(0,7)} \leqslant n.$$
 Or $\frac{\ln(0,1)}{\ln(0,7)} \simeq 6,4$. La plus petite valeur possible de n est donc 7 : **réponse b**).

- **2.** La probabilité que le moteur fonctionne sans panne pendant plus de 10 000 heures est : $p(X > 10\,000) = 1 p(X \le 10\,000) = 1 \int_0^{10\,000} \lambda e^{-\lambda x} dx = 1 \left[-e^{-\lambda x} \right]_0^{10\,000} = e^{-0,000\,2 \times 10\,000} = e^{-2} \approx 0,135$: **réponse b**).
- **3.** Le nombre X de fois où le joueur perd au cours d'une partie suit la loi binomiale $\mathcal{B}(5, \frac{1}{6})$, donc : $p(X=3) = {5 \choose 3} \left(\frac{1}{6}\right)^3 \left(\frac{5}{6}\right)^2 = \frac{125}{3888}$: **réponse a**).
- **4.** A et B sont indépendants, donc $p(A \cap B) = p(A)p(B)$. L'égalité $p(A \cup B) = p(A) + p(B) p(A \cap B)$ devient donc : 0.65 = 0.3 + p(B) 0.3p(B), qui équivaut à 0.35 = 0.7p(B), d'où p(B) = 0.5 : **réponse a)**.

EXERCICE 4 5 points Candidats ayant suivi l'enseignement de spécialité

- **1. a.** Les entiers 11 et 7 sont premiers entre eux, donc, d'après le théorème de Bézout, il existe un couple (u; v) d'entiers relatifs tels que 11u 7v = 1. Par ailleurs $11 \times 2 7 \times 3 = 1$, le couple (2; 3) répond alors à la question.
 - **b.** On a, en multipliant chaque membre de la dernière égalité par 5, $11 \times 10 7 \times 15 = 5$. Le couple (10 ; 15) est donc une solution particulière de (E).
 - **c.** Soit (x; y) une solution de (E), alors $11x 7y = 11 \times 10 7 \times 15$, d'où:

$$11(x-10) = 7(y-15). (1)$$

7 divise 11(x-10) et est premier avec 11, donc, d'après le théorème de Gauss, 7 divise x-10: il existe donc un entier relatif k tel que x-10=7k. En remplaçant x-10 par 7k dans (1), puis en simplifiant, on en déduit que y-15=11k. Ainsi, si (x;y) est solution de (E), alors nécessairement (x;y) est de la forme (10+7k;15+11k) avec $k \in \mathbb{Z}$. Réciproquement, on vérifie aisément que de tels couples sont bien solutions de (E).

d. Un point de D à coordonnées entières appartient à $\mathscr C$ si et seulement

si
$$\begin{cases} x \in \mathbb{Z} ; y \in \mathbb{Z} \\ 11x - 7y = 5 \\ 0 \leqslant x \leqslant 50 ; 0 \leqslant y \leqslant 50 \end{cases} \Leftrightarrow \begin{cases} (x; y) \text{ solution de (E)} \\ 0 \leqslant x \leqslant 50 ; 0 \leqslant y \leqslant 50 \end{cases} \text{ On cherche}$$

donc tous les entiers relatifs k tels que $0 \le 10 + 7k \le 50$ et $0 \le 15 + 11k \le 50$, ce qui équivaut à $-\frac{10}{7} \le k \le \frac{50}{7}$ et $-\frac{15}{11} \le k \le \frac{35}{11}$. Les seules valeurs possibles de k sont -1, 0, 1, 2 et 3. Il y a donc cinq points de $\mathscr C$ donc les coordonnées sont entières :

$$A(3;4)$$
 $B(10;15)$ $C(17;26)$ $D(24;37)$ $E(31;48)$.

- **2. a.** On a $11 \equiv 1$ (5), $7 \equiv 2$ (5) et $5 \equiv 0$ (5), par conséquent, si le couple (x; y) est solution de (F), en « passant » aux congruences : $11x^2 7y^2 = 5$ devient $x^2 2y^2 \equiv 0$ (5), c'est-à-dire $x^2 \equiv 2y^2$ (5).
 - **b.** On calcule aisément :

Modulo 5, x est congru à	0	1	2	3	4
Modulo 5, x^2 est congru à	0	1	4	4	1

Antilles-Guyane 3 20 juin 2011

Baccalauréat S A. P. M. E. P.

Modulo 5, <i>y</i> est congru à	0	1	2	3	4
Modulo 5, $2y^2$ est congru à	0	2	3	3	2

Les valeurs possibles du reste de la division euclidienne de x^2 par 5 sont donc 0, 1 et 4. De même, les valeurs possibles du reste de la division euclidienne de $2y^2$ par 5 sont 0, 2 et 3.

- **c.** Si (x ; y) est solution de (F), alors $x^2 \equiv 2y^2$ (5) ce qui n'est possible, d'après les tableaux précédents, que si $x \equiv 0$ (5) et $y \equiv 0$ (5), c'est-à-dire si x et y sont des multiples de 5.
- 3. Supposons que x et y sont deux entiers multiples de 5. Alors il existe des entiers a et b tels que x = 5a et y = 5b. En « réinjectant » cela dans l'équation (F) on a alors : $11 \times 25a^2 7 \times 25b^2 = 5$, c'est-à-dire $25(11a^2 7b^2) = 5$, ce qui est impossible (5 n'est pas multiple de 25!). L'équation (F) ne possède donc aucune solution.

EXERCICE 4 5 points Candidats n'ayant pas suivi l'enseignement de spécialité

- 1. $\overrightarrow{u} \cdot \overrightarrow{w} = 1 \times 1 3 \times 0 + 1 \times (-1) = 0$, donc $\overrightarrow{u} \perp \overrightarrow{w}$. La droite Δ est dirigée par le vecteur $\overrightarrow{u'}$ (-1; 1; -1) et $\overrightarrow{u'} \cdot \overrightarrow{w} = 0$, donc $\overrightarrow{u'} \perp \overrightarrow{w}$. Les vecteurs \overrightarrow{u} et $\overrightarrow{u'}$ dirigent respectivement D et D' et sont orthogonaux à \overrightarrow{w} qui est donc un vecteur directeur de Δ .
- 2. **a.** $\overrightarrow{n} \cdot \overrightarrow{u} = 3 6 + 3 = 0$ donc $\overrightarrow{n} \perp \overrightarrow{u}$; de même, $\overrightarrow{n} \cdot \overrightarrow{w} = 3 3 = 0$ donc $\overrightarrow{n} \perp \overrightarrow{w}$. Les vecteurs \overrightarrow{u} et \overrightarrow{w} n'étant pas pas colinéaires, ils forment une base du plan P, et le vecteur \overrightarrow{n} est donc normal à ce plan.
 - **b.** P a pour vecteur normal \overrightarrow{n} (3 ; 2 ; 3). Une équation cartésienne de P est donc : 3x + 2y + 3z + d = 0, où d est un réel à déterminer. Comme $A(3; -4; 1) \in P$, on a : $3 \times 3 + 2 \times (-4) + 3 \times 1 + d = 0$, d'où d = -4. Une équation cartésienne de P est donc : 3x + 4y + 3z 4 = 0.
- **3. a.** H' est un point de D', il existe donc un réel t tel que H'(-1-t; 2+t; 1-t). Par ailleurs $H' \in P$, donc 3(-1-t)+4(2+t)+3(1-t)-4=0, d'où, en développant, -4t=0 puis t=0, ce qui donne H'(-1; 2; 1).
 - **b.** La droite Δ passe par H'(-1; 2; 1) et est dirigée par $\overrightarrow{w}(1; 0; -1)$. Une représentation paramétrique de Δ est donc :

$$\begin{cases} x = -1 + s \\ y = 2 \quad (s \in \mathbb{R}) \\ z = 1 - s \end{cases}$$

4. a. $H \in D$, donc il existe $\lambda \in \mathbb{R}$ tel que $\overrightarrow{AH} = \lambda \overrightarrow{u}$, d'où l'on déduit $H(3 + \lambda; -4 - 3\lambda; 1 + \lambda)$. De plus H est un point commun aux droites D et Δ , il existe donc une valeur de s et une valeur de λ telles que :

$$\begin{cases}
-1+s &= 3+\lambda \\
2 &= -4-3\lambda \\
1-s &= 1+\lambda
\end{cases}$$

L'équation du milieu donne $\lambda = -2$ et les deux autres donnent alors s = 2; on en déduit que H(1; 2; -1).

- **b.** $HH' = \sqrt{(-1-1)^2 + (2-2)^2 + (1+1)^2} = \sqrt{8} = 2\sqrt{2}.$
- 5. **a.** D'après la relation de Chasles, $\overrightarrow{MM'} = \overrightarrow{MH} + \overrightarrow{HH'} + \overrightarrow{H'M'}$. Posons $\overrightarrow{v} = \overrightarrow{MH} + \overrightarrow{H'M'}$, alors $\overrightarrow{v} \cdot \overrightarrow{HH'}$ car $(MH) \perp (HH')$ et $(H'M') \perp (HH')$.

Antilles-Guyane 4 20 juin 2011

Baccalauréat S A. P. M. E. P.

b. $\overrightarrow{MM'} = \overrightarrow{HH'} + \overrightarrow{v}$, donc $(\overrightarrow{MM'})^2 = (\overrightarrow{HH'})^2 + 2\overrightarrow{HH'} \cdot \overrightarrow{v} + \overrightarrow{v}^2$, comme $\overrightarrow{HH'} \cdot \overrightarrow{v} = 0$, il reste $MM' = HH'^2 + ||\overrightarrow{v}||^2$, d'où : $MM'^2 \ge HH'^2$. La plus petite distance possible entre deux points de D et de D' est donc obtenue pour les points H et H'. La distance entre les droites D et D' est donc ógalo à $2\sqrt{2}$.

donc égale à $2\sqrt{2}$.

Antilles-Guyane 5 20 juin 2011