ം Baccalauréat S Antilles-Guyane 22 juin 2015 രം

EXERCICE 1 6 POINTS

Commun à tous les candidats

Soit f la fonction définie sur l'intervalle]0; $+\infty[$ par $f(x) = \ln x$.

Pour tout réel a strictement positif, on définit sur]0; $+\infty[$ la fonction g_a par $g_a(x) = ax^2$.

On note $\mathscr C$ la courbe représentative de la fonction f et Γ_a celle de la fonction g_a dans un repère du plan. Le but de l'exercice est d'étudier l'intersection des courbes $\mathscr C$ et Γ_a suivant les valeurs du réel strictement positif a.

Partie A

On a construit en **annexe 1** (à *rendre avec la copie*) les courbes \mathscr{C} , $\Gamma_{0,05}$, $\Gamma_{0,1}$, $\Gamma_{0,19}$ et $\Gamma_{0,4}$.

- 1. Nommer les différentes courbes sur le graphique. Aucune justification n'est demandée.
- **2.** Utiliser le graphique pour émettre une conjecture sur le nombre de points d'intersection de \mathscr{C} et Γ_a suivant les valeurs (à préciser) du réel a.

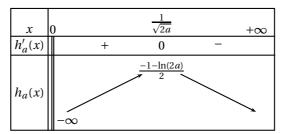
Partie B

Pour un réel a strictement positif, on considère la fonction h_a définie sur l'intervalle]0; $+\infty[$ par

$$h_a(x) = \ln x - ax^2$$
.

- **1.** Justifier que x est l'abscisse d'un point M appartenant à l'intersection de \mathscr{C} et Γ_a si et seulement si $h_a(x) = 0$.
- **2. a.** On admet que la fonction h_a est dérivable sur]0; $+\infty[$, et on note h'_a la dérivée de la fonction h_a sur cet intervalle.

Le tableau de variation de la fonction h_a est donné ci-dessous. Justifier, par le calcul, le signe de $h'_a(x)$ pour x appartenant à]0; $+\infty[$.



b. Rappeler la limite de $\frac{\ln x}{x}$ en $+\infty$. En déduire la limite de la fonction h_a en $+\infty$

On ne demande pas de justifier la limite de h_a en 0.

- **3.** Dans cette question et uniquement dans cette question, on suppose que a = 0.1.
 - **a.** Justifier que, dans l'intervalle $\left]0$; $\frac{1}{\sqrt{0.2}}\right]$, l'équation $h_{0,1}(x)=0$ admet une unique solution.

On admet que cette équation a aussi une seule solution dans l'intervalle $\left|\frac{1}{\sqrt{0.2}}; +\infty\right|$.

- **b.** Quel est le nombre de points d'intersection de \mathscr{C} et $\Gamma_{0,1}$?
- **4.** Dans cette question et uniquement dans cette question, on suppose que $a = \frac{1}{2e}$.

- **a.** Déterminer la valeur du maximum de $h_{\frac{1}{2a}}$.
- **b.** En déduire le nombre de points d'intersection des courbes $\mathscr C$ et $\Gamma_{\frac{1}{2e}}$. Justifier.
- 5. Quelles sont les valeurs de a pour lesquelles \mathscr{C} et Γ_a n'ont aucun point d'intersection?

 Justifier.

EXERCICE 2 5 POINTS

Commun à tous les candidats

La partie C peut être traitée indépendamment des parties A et B

Partie A

On considère une variable aléatoire X qui suit la loi exponentielle de paramètre λ avec $\lambda > 0$.

On rappelle que, pour tout réel a strictement positif,

$$P(X \leqslant a) = \int_0^a \lambda e^{-\lambda t} dt.$$

On se propose de calculer l'espérance mathématique de X, notée E(X), et définie par

$$E(X) = \lim_{x \to +\infty} \int_0^x \lambda t e^{-\lambda t} dt.$$

On note $\ensuremath{\mathbb{R}}$ l'ensemble des nombres réels.

On admet que la fonction F définie sur \mathbb{R} par $F(t) = -\left(t + \frac{1}{\lambda}\right)e^{-\lambda t}$ est une primitive sur \mathbb{R} de la fonction f définie sur \mathbb{R} par $f(t) = \lambda t e^{-\lambda t}$.

1. Soit *x* un nombre réel strictement positif. Vérifier que

$$\int_0^x \lambda t e^{-\lambda t} dt = \frac{1}{\lambda} \left(-\lambda x e^{-\lambda x} - e^{-\lambda x} + 1 \right).$$

2. En déduire que $E(X) = \frac{1}{\lambda}$.

Partie B

La durée de vie, exprimée en années, d'un composant électronique peut être modélisée par une variable aléatoire notée X suivant la loi exponentielle de paramètre λ avec $\lambda > 0$.

La courbe de la fonction densité associée est représentée en annexe 2.

- 1. Sur le graphique de l'annexe 2 (à rendre avec la copie) :
 - **a.** Représenter la probabilité $P(X \leq 1)$.
 - **b.** Indiquer où se lit directement la valeur de λ .
- **2.** On suppose que E(X) = 2.
 - **a.** Que représente dans le cadre de l'exercice la valeur de l'espérance mathématique de la variable aléatoire *X* ?
 - **b.** Calculer la valeur de λ .
 - **c.** Calculer $P(X \le 2)$. On donnera la valeur exacte puis la valeur arrondie à 0,01 près.

Interpréter ce résultat.

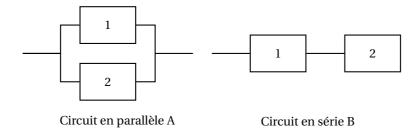
d. Sachant que le composant a déjà fonctionné une année, quelle est la probabilité que sa durée de vie totale soit d'au moins trois années? On donnera la valeur exacte.

Partie C

Un circuit électronique est composé de deux composants identiques numérotés 1 et 2. On note D_1 l'évènement « le composant 1 est défaillant avant un an » et on note D_2 l'évènement « le composant 2 est défaillant avant un an ».

On suppose que les deux événements D_1 et D_2 sont indépendants et que $P(D_1) = P(D_2) = 0,39$.

Deux montages possibles sont envisagés, présentés ci-dessous :



- Lorsque les deux composants sont montés « en parallèle », le circuit A est défaillant uniquement si les deux composants sont défaillants en même temps.
 Calculer la probabilité que le circuit A soit défaillant avant un an.
- **2.** Lorsque les deux composants sont montés « en série », le circuit B est défaillant dès que l'un au moins des deux composants est défaillant. Calculer la probabilité que le circuit B soit défaillant avant un an.

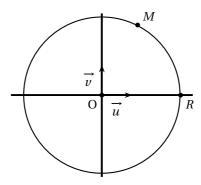
EXERCICE 3 4 POINTS

Commun à tous les candidats

Partie A

On appelle $\mathbb C$ l'ensemble des nombres complexes.

Dans le plan complexe muni d'un repère orthonormé $(O; \overrightarrow{u}, \overrightarrow{v})$ on a placé un point M d'affixe z appartenant à \mathbb{C} , puis le point R intersection du cercle de centre O passant par M et du demi-axe O; O; O0; O1.



- 1. Exprimer l'affixe du point R en fonction de z.
- **2.** Soit le point M' d'affixe z' définie par

$$z' = \frac{1}{2} \left(\frac{z + |z|}{2} \right).$$

Reproduire la figure sur la copie et construire le point M'.

Partie B

On définit la suite de nombres complexes (z_n) par un premier terme z_0 appartenant à $\mathbb C$ et, pour tout entier naturel n, par la relation de récurrence :

$$z_{n+1} = \frac{z_n + |z_n|}{4}.$$

Le but de cette partie est d'étudier si le comportement à l'infini de la suite ($|z_n|$) dépend du choix de z_0 .

- 1. Que peut-on dire du comportement à l'infini de la suite $(|z_n|)$ quand z_0 est un nombre réel négatif?
- **2.** Que peut-on dire du comportement à l'infini de la suite ($|z_n|$) quand z_0 est un nombre réel positif?
- **3.** On suppose désormais que z_0 n'est pas un nombre réel.
 - **a.** Quelle conjecture peut-on faire sur le comportement à l'infini de la suite $(|z_n|)$?
 - b. Démontrer cette conjecture, puis conclure.

EXERCICE 4 5 POINTS Candidats n'ayant pas suivi l'enseignement de spécialité

Partie A

On considère l'algorithme suivant :

Variables :	k et p sont des entiers naturels
	<i>u</i> est un réel
Entrée :	Demander la valeur de <i>p</i>
Traitement	,
	: Affecter à u la valeur 5
	Pour k variant de 1 à p
	Affecter à u la valeur $0,5u+0,5(k-1)-1,5$
	Fin de pour
Sortie:	Afficher <i>u</i>

Faire fonctionner cet algorithme pour p=2 en indiquant les valeurs des variables à chaque étape.

Quel nombre obtient-on en sortie?

Partie B

Soit (u_n) la suite définie par son premier terme $u_0 = 5$ et, pour tout entier naturel n par

$$u_{n+1} = 0.5u_n + 0.5n - 1.5.$$

- 1. Modifier l'algorithme de la première partie pour obtenir en sortie toutes les valeurs de u_n pour n variant de 1 à p.
- **2.** À l'aide de l'algorithme modifié, après avoir saisi p=4, on obtient les résultats suivants :

n	1	2	3	4
u_n	1	-0,5	-0,75	-0,375

Peut-on affirmer, à partir de ces résultats, que la suite (u_n) est décroissante? Justifier.

- **3.** Démontrer par récurrence que pour tout entier naturel n supérieur ou égal à 3, $u_{n+1} > u_n$.
 - Que peut-on en déduire quant au sens de variation de la suite (u_n) ?
- **4.** Soit (v_n) la suite définie pour tout entier naturel n par $v_n = 0, 1u_n 0, 1n + 0, 5$. Démontrer que la suite (v_n) est géométrique de raison 0,5 et exprimer alors v_n en fonction de n.

22 juin 2015 4 Antilles-Guyane

5. En déduire que, pour tout entier naturel n,

$$u_n = 10 \times 0.5^n + n - 5.$$

6. Déterminer alors la limite de la suite (u_n) .

EXERCICE 4 5 POINTS

Candidats ayant suivi l'enseignement de spécialité

Les parties A et B peuvent être traitées de façon indépendante

Partie A

Pour deux entiers naturels non nuls a et b, on note r(a, b) le reste dans la division euclidienne de a par b.

On considère l'algorithme suivant :

Variables :	c est un entier naturel
	a et b sont des entiers naturels non nuls
Entrées :	Demander <i>a</i>
	Demander <i>b</i>
Traitement:	Affecter à c le nombre $r(a, b)$
	Tant que $c \neq 0$
	Affecter à a le nombre b
	Affecter à b la valeur de c
	Affecter à c le nombre $r(a, b)$
	Fin Tant que
Sortie:	Afficher b

- 1. Faire fonctionner cet algorithme avec a = 26 et b = 9 en indiquant les valeurs de a, b et c à chaque étape.
- **2.** Cet algorithme donne en sortie le PGCD des entiers naturels non nuls a et b. Le modifier pour qu'il indique si deux entiers naturels non nuls a et b sont premiers entre eux ou non.

Partie B

À chaque lettre de l'alphabet on associe grâce au tableau ci-dessous un nombre entier compris entre 0 et 25.

A	В	С	D	Е	F	G	Н	I	J	K	L	M
0	1	2	3	4	5	6	7	8	9	10	11	12
N	О	P	Q	R	S	T	U	V	W	X	Y	Z

On définit un procédé de codage de la façon suivante :

Étape 1 : on choisit deux entiers naturels p et q compris entre 0 et 25.

Étape 2 : à la lettre que l'on veut coder, on associe l'entier x correspondant dans le tableau ci-dessus.

Étape 3 : on calcule l'entier x' défini par les relations

$$x' \equiv px + q$$
 [26] et $0 \leqslant x' \leqslant 25$.

Étape 4 : à l'entier x', on associe la lettre correspondante dans le tableau.

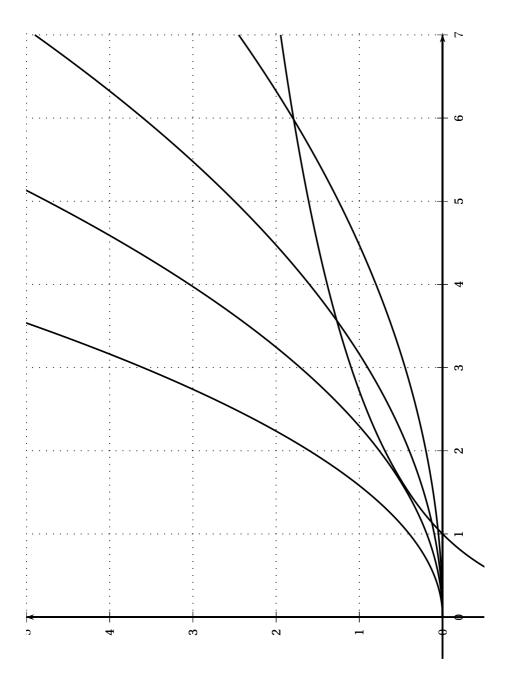
- **1.** Dans cette question, on choisit p = 9 et q = 2.
 - a. Démontrer que la lettre V est codée par la lettre J.
 - **b.** Citer le théorème qui permet d'affirmer l'existence de deux entiers relatifs u et v tels que 9u + 26v = 1. Donner sans justifier un couple (u, v) qui convient.
 - **c.** Démontrer que $x' \equiv 9x + 2$ [26] équivaut à $x \equiv 3x' + 20$ [26].

- d. Décoder la lettre R.
- **2.** Dans cette question, on choisit q = 2 et p est inconnu. On sait que J est codé par D.
 - Déterminer la valeur de p (on admettra que p est unique).

3. Dans cette question, on choisit p = 13 et q = 2. Coder les lettres B et D. Que peut-on dire de ce codage?

À RENDRE AVEC LA COPIE

ANNEXE 1 de l'exercice 1



22 juin 2015 7 Antilles-Guyane

À RENDRE AVEC LA COPIE

ANNEXE 2 de l'exercice 2

