LYCEE DE MONATELE					
EXAMEN	Session intensive N°1	Classes	Tles CD	Année	2015 - 2016
Examinateur	M. J.C. MIMSHE FEWU	COEF	2	DUREE	3h

Examinateur	M. J.C. MIMSHE FEWU	COEF	2	DUREE	3h				
EPREUVE DE CHIMIE La qualité de la rédaction, la présentation et la clarté des raisonnements entreront pour une part importante dans l'appréciation des copies.									
	imie organique			wanto I appirociacio	7,5points				
1. QCM : Choisi	ir la bonne réponse parmi celles qui	i sont proposé	es ci - des	ssous	0,25pt				
Deux énantiom	ères sont des isomères de :								
a. Constitution	b. confor	rmation		C. (configuration				
2. Nomenclatur	e								
	2.1. Nommer chacun des composés de formules semi-développées suivantes :								
	H_3) – (C H_2) ₂ – C H (N H_2) – COOH		H(CH ₃) –	$CO - N(C_2H)$	5)2 0,5pt				
	mule semi-développée des compos								
a. (E) 6 –aminoh	1				n-4-one 0,5pt				
3. La combustion dans l'air d'un alcool de formule brute C _x H _y O donne pour 0,25g d'alcool, 280ml									
	arbone gazeux et de l'eau. Le volur	=	e de carbo	one est mesur	é dans des				
	e volume molaire gazeux est 22,4L.r	nol ⁻¹			0.05 4				
	ation entre x et y.				0,25pt				
•	ation-bilan de cette combustion.				0,25pt				
3.3. Calculer x e		nása nassiblas	nour cot	alcool 2	0,75pt				
3.4. Quels sont les noms et formules semi-développées possibles pour cet alcool? 4. Un algorit A. de formule brute C-H-O denne suscessivement deux composée R. et C. per									
4. Un alcool A1 de formule brute C3H8O donne successivement deux composés B1 et C1 par oxydation ménagée catalytique à l'air. B1 forme un dépôt d'argent avec le nitrate d'argent									
ammoniacal, alors que C1 fait rougir le papier pH humide. Un autre alcool A2, isomère de A1, subit									
l'oxydation ménagée par déshydrogénation catalytique et donne un corps B ₂ qui est sans action sur									
•	hling et sur le papier pH humide.		on corps	7 22 qu i					
-	quation-bilan des réactions d'oxyda	tion de A1 et d	le A2.		0,75pt				
•	formules semi-développées et les n				0,75pt				
	acide éthanoïque sur le butan1ol co			et de l'eau.	•				
5.1. Ecrire l'équa	ation-bilan de cette réaction.		-		0,25pt				
5.2. Nommer ce	tte réaction.				0,25pt				
5.3. Nommer C ₂	? .				0,25pt				
6. L'acide éthanoïque chauffé en présence du décaoxyde de tétraphosphore (P4O10) qui est un									
déshydratant, d	lonne un corps A3. Donner la formu	ıle semi-dével	oppée et	le nom de A3	. 0,5pt				
	1ol réagissent à température modéi	rée (50° C) pou	ır donner	C_2 .					
-	ation-bilan de cette réaction.				0,25pt				
-	ette réaction à celle de la question 5				0,25pt				
8. Deux molécules d'acide 2 –aminopropanoique, encore appelé alanine, réagissent entre elles pour donner un peptide. Ecrire l'équation bilan de cette réaction, en mettant en évidence la liaison									
	-		iettant en	evidence la l					
peptique ; l'uis	en déduire le nom du produit ainsi	torme			0,75pt				

Exercice 2 : Chimie générale

4points

Les niveaux d'énergie de l'atome d'hydrogène sont donnés par la relation : $E_n = -13.6/n^2$, Avec n, entier positif non nul, et E_n en eV.

- 1. Etablir la relation littérale de la fréquence des radiations émises lorsque cet atome passe d'un état excité p > 2 à l'état n = 2 (série de Balmer). 0,5pt
 - Calculer cette fréquence pour les valeurs suivantes de $p: p_1 = 3$; $p_2 = 4$; $p_3 = 5$ et $p_4 = 6$. 1pt
 - En déduire les longueurs d'onde λ_1 , λ_2 , λ_3 et λ_4 des radiations correspondantes.

1pt

- 2. Tracer le diagramme représentant les transitions entre différents niveaux d'énergie de l'atome d'hydrogène pour ces quatre raies.

 1pt
- 3. Un photon d'énergie **14,6eV** arrive sur un atome d'hydrogène. Que se passe-t-il si l'atome est à l'état fondamental ? **Données** : $h = 6,62.10^{-34}$ **J.s** ; $1 = 1,6.10^{-19}$ **J** ; $C = 3.10^{8}$ m/s. 0,5pt

Exercice 3 : Cinétique chimique

5 points

- 1. Définir les termes suivants : **Vitesse moyenne de formation d'un corps ; Vitesse instantanée de formation**. **0,5pt**
- 2. On veut étudier la cinétique de la réaction entre le thiosulfate de sodium (Na₂S₂O₃) et l'acide chlorhydrique. Pour cela, on verse **10ml** de solution d'acide chlorhydrique de concentration **C**= **5 mol.L**⁻¹ dans **40ml** d'une solution de thiosulfate de sodium de concentration **C**' = **0,5mol.L**⁻¹. Il se dégage du dioxyde de soufre, et le mélange blanchit progressivement par formation du soufre solide.
- 2.1 Ecrire l'équation-bilan de la réaction.

0,75pt

- 2.2. L'étude de l'évolution de la formation du soufre en fonction du temps conduit à la courbe cidessous (Voir figure 1), où n_s représente la quantité de matière de soufre formé.
- 2.2.1. Déterminer la valeur limite de n_s ; Quel est le réactif en excès ?

0,25pt

- 2.2.2. Calculer la vitesse moyenne de formation du soufre (en mol.min⁻¹) entre les instants $t_0 = 0$ et $t_1 = 2min$
- 2.2.3. Déterminer la vitesse moyenne de disparition des ions hydroniums entre ces mêmes instants.
- 2.2.4. Calculer la vitesse instantanée de formation du soufre à la date t₁ = 2 min.

0,5pt

- 2.3. Avec une nouvelle solution d'acide chlorhydrique de concentration **3 mol.L**⁻¹, on reprend l'expérience précédente, tout en conservant les mêmes volumes de réactifs et la concentration de la solution de thiosulfate de sodium.
- 2.3.1. Dire, en justifiant la réponse, si la valeur limite trouvée à la question 2.2.1 est modifiée.
 2.3.2. La vitesse de formation du soufre est-elle également modifiée?
 0,5pt
 0,5pt

Exercice 4 : Type expérimental

3,5points

Pour préparer un savon, on introduit **25cm³** de soude à **15mol/L**, **15g** d'huile et **25cm³** d'éthanol. On agite pour homogénéiser le mélange. On adapte ensuite un réfrigérant à eau et on porte le mélange à ébullition pendant **30 minutes** en agitant régulièrement. Le mélange visqueux obtenu après un chauffage à reflux est versé dans un verre à pied contenant de l'eau salée. Le savon est ensuite obtenu par filtration.

- 1. Faire un schéma annoté du dispositif expérimental du **chauffage à reflux**
- 2. Quel est l'intérêt de l'utilisation de l'eau salée au cours de la préparation du savon ? 0,25pt
- 3. Quel est le rôle de la filtration?

0,25pt

0,75pt

- 4. Sachant que l'huile utilisée est un triester obtenu à partir de l'acide palmique (C₁₅H₃₁-COOH) et du propane −1, 2, 3-triol
- 4.1. Ecrire la formule de ce triester

0,5pt

4.2. Ecrire l'équation bilan de la réaction de saponification

0,5pt

- 4.3. Peut-on utiliser un matériel en aluminium au cours de la préparation du savon ? Justifier 0,5pt
- 4.4. Quel est la masse de savon obtenue si le rendement de la réaction est de 75%

0,75pt

ANNEXE DES FIGURES (A remettre avec la feuille de composition)

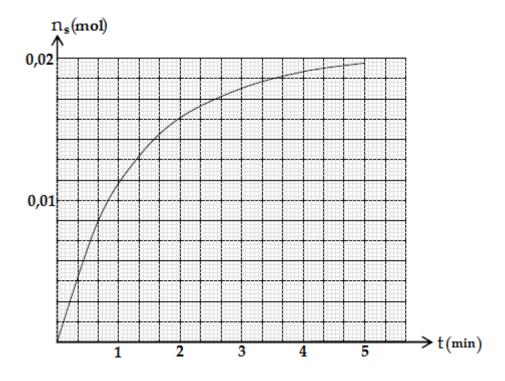


Figure 1