Pays : TogoAnnée : 2015Session : normaleSérie : BAC, série DDurée : 4 hCoefficient : 3

Exercice 1

Le tableau suivant donne l'évolution de l'indice annuel des dépenses, exprimé en milliards de francs CFA, d'une compagnie multinationale pendant ces 10 dernières années.

Année	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Numéro de l'année (x_i)	1	2	3	4	5	6	7	8	9	10
Indice des dépenses (x_i)	36	45	40	58	70	64	80	95	100	108

- **1.** *a*) Représenter le nuage de points associé à la série statistique double (x_i, x_j) dans un plan rapporté au repère orthonormé $(O; \vec{i}, \vec{j})$ dont l'unité graphique est 1 cm pour une année en abscisse et 1 cm pour 10 milliards de francs CFA en ordonnée.
- b) Calculer les coordonnées du point moyen G puis le construire sur la figure précédente.
- **2.** a) Calculer à 10^{-3} près, le coefficient de corrélation linéaire de la série (x_i, x_i) .

Un ajustement linéaire peut-il être envisagé ? Justifier la réponse.

b) Déterminer par la méthode des moindres carrés, l'équation de la droite (D) de régression linéaire de y en x. (On donnera les coefficients à 10^{-3} près).

Représenter la droite (D) dans le repère précédent.

- 3. On suppose que l'évolution de l'indice se poursuit de la même façon dans les années à venir.
- a) Donner une estimation en milliards de francs CFA de l'indice annuel des dépenses de la compagnie en 2030.
- b) En quelle année, l'indice annuel des dépenses de cette compagnie dépassera-t-il 300 milliards de francs CFA ?

Exercice 2

- 1. On considère dans l'ensemble $\mathbb C$ des nombres complexes, l'équation :
- (E): $Z \in \mathbb{C}$, $Z^4 + (-5 + 3i)Z^3 + (8 9i)Z^2 + (-14 + 6i)Z + 10 = 0$.
- a) Vérifier que l et i sont des solutions évidentes de (E).
- b) Résoudre l'équation (E).
- 2. Dans le plan complexe rapporté à un repère orthonormé direct $(O; \vec{u}, \vec{v})$, on considère les points
- A, B, C et D d'affixes respectives 1, i, 1–3i et 3 i.
- a) Placer ces points dans le repère $(O; \vec{u}, \vec{v})$.
- b) Soit S la similitude directe qui transforme A en C et B en D.
- b_1) Déterminer l'écriture complexe de S.
- b_2) Donner les éléments caractéristiques de S (centre Ω , rapport k et angle α).
- **3.** On considère la suite de points M_n d'affixe Z_n $(n \in \mathbb{N})$ avec $Z_0 = i$ et $Z_{n+1} = -2iZ_n + 1 i$.
- a) Calculer $\frac{Z_{n+1}-\omega}{Z_n-\omega}$ où ω est l'affixe du centre Ω de la similitude S.

En déduire la nature du triangle $\Omega M_n M_{n+1}$.

- b) Démontrer que la suite $(U_n)_{n\in\mathbb{N}}$ définie par la relation : $U_n = |\mathbf{Z}_{n+1} \mathbf{Z}_n|$ est une suite géométrique dont on précisera le 1 er terme et la raison.
- c) Exprimer en fonction de n la longueur $d_n = M_0M_1 + M_1M_2 + ... + M_{n-1}M_n + M_nM_{n+1}$, $(n \ge 2)$.

Problème

Partie I

On considère la fonction g_k de la variable réelle x définie par : $g_k(x) = -2x + 1 + 2x \ln(kx)$,

k étant un paramètre réel non nul.

- **1.** Déterminer, suivant les valeurs prises par k, l'ensemble de définition E_k de g_k .
- **2.** Calculer les limites de g_k aux bornes de E_k pour k > 0 et pour k < 0.
- **3.** Calculer la dérivée g'_k de g_k .
- **4.** Établir le tableau de variations de g_k pour chaque cas.
- **5.** a) Montrer que pour k > 2 et pour $x \in]0$; $+\infty[$, $g_k(x) > 0$.
- b) Montrer que pour k < 0, l'équation $g_k(x) = 0$ admet une solution négative unique α_0 élément de

l'intervalle
$$\left[-\infty; \frac{1}{k}\right]$$
.

- c) Montrer que pour 0 < k < 2, l'équation $g_k(x) = 0$ admet exactement deux solutions positives α_1 et α_2 .
- d) Étudier le signe de $g_2(x)$.

Partie II

Soit la fonction numérique f_k de la variable réelle x, définie par : $f_k(x) = \frac{1}{k} - \frac{\ln(kx)}{2x-1}$,

k étant un paramètre réel supérieur ou égal à 2 ; on désigne par (\mathscr{C}_k) , la représentation graphique de f_k dans le plan muni d'un repère orthonormé $(O; \vec{i}, \vec{j})$. Unité graphique : 1 cm.

- **1.** Déterminer l'ensemble de définition D_k de la fonction f_k .
- **2.** *a*) Montrer que la fonction f_2 admet un prolongement par continuité en $\frac{1}{2}$.

On rappelle que
$$\lim_{h\to 0} \frac{\ln(h+1)}{h} = 1$$
.

- b) Calculer aux bornes de D_k les limites de f_k .
- 3. a) Calculer la fonction dérivée f_k ' de f_k et établir une relation entre f_k '(x) et g_k (x) pour tout x de D_k .
- b) Étudier le sens de variation de f_k et dresser son tableau de variations pour k = 2 et pour $k \neq 2$.
- **4.** Représenter (\mathscr{C}_2) et (\mathscr{C}_4) dans le même repère.

Préciser les asymptotes à chacune de ces courbes.

Partie III

- **1.** a) A l'aide de f_2 , montrer que : $\forall x \in \left[\frac{1}{2}; +\infty \right[, 0 < \ln 2x < 2x 1.$
- b) En déduire que : $\int_{1}^{2} \ln 2x dx < 2$.
- **2.** A l'aide du graphique de la **partie II**, montrer que : $\frac{\ln 6}{5} < \frac{1}{2} \int_2^3 f_2(x) dx < \frac{2\ln 2}{3}$.

(Utiliser la méthode des rectangles, on choisit 2 rectangles convenables).