Pays : SénégalAnnée : 2017Épreuve : Maths, 1er GroupeExamen : Bac, Séries LDurée : 3 hCoefficient : 2

EXERCICE 1 (05,5 points)

- 1. On donne le polynôme $P(x) = ax^3 + bx^2 18x + c$ où a, b et c sont des réels. Déterminer a, b et c sachant que $P(\frac{1}{2}) = 0$, P(0) = 8 et P(2) = 0.
- 2. Dans la suite, on considère que $P(x) = 2x^3 + 3x^2 18x + 8$.
 - a) Factoriser P(x).
 - b) Résoudre dans \mathbb{R} , l'équation P(x) = 0.
 - c) Résoudre dans \mathbb{R} , l'inéquation $P(x) \leq 0$.
- **3.** Déduire des questions précédentes les solutions dans \mathbb{R} de :
 - a) (E): $2(\ln(x+1))^3 + 3(\ln(x+1))^2 18\ln(x+1) + 8 = 0$.
 - b) (E'): $8e^{-2x} 18e^{-x} + 2e^x + 3 \le 0$.

EXERCICE 2 (05 points)

Dix candidats dont quatre garçons et six filles se présentent à un concours pour lequel les trois premiers sont primés. Il n'y a pas d'ex-aequo.

- 1. Déterminer le nombre de façons de primer les trois premiers.
- **2.** Calculer la probabilité des événements suivants :

A : « le premier prix est obtenu par une fille. »

B: « aucune fille n'est primée. »

C : « un seul garçon est primé et il est le troisième. »

D: « un seul garçon est primé. »

EXERCICE 3 (09,5 points)

On considère la fonction numérique f de la variable réelle x définie par : $f(x) = x^3 - 3x + 1$ (C_f) sa courbe représentative dans un repère orthonormé (O; \vec{i} , \vec{j}), unité graphique 1 cm.

- 1. Déterminer l'ensemble de définition D_f de f. Étudier les limites de f aux bornes de D_f .
- **2.** Montrer que le point $\Omega(0;1)$ est centre de symétrie de (C_f) .
- **3.** Déterminer la fonction dérivée f ' de f.
- **4.** Étudier le signe de f '.
- **5.** Dresser le tableau de variations de *f*.
- **6.** Déterminer une équation de la tangente (T) à (C_f) au point Ω .
- 7. Placer le point Ω . Construire la tangente (T) et la courbe (\mathcal{C}_f) dans le repère (O; \vec{i} , \vec{j}).
- **8.** Calculer l'aire, en cm², du domaine du plan compris entre la courbe (C_f) , l'axe des abscisses et les droites d'équation : x = -3/2 et x = 0.