Pays : Cameroun	Année : 2017	Épreuve : Mathématiques
Examen : BAC, Séries A-ABI	Durée : 3 h	Coefficient : 3

EXERCICE 1 (05 points)

- **1.** Résoudre dans \mathbb{R} l'inéquation : $x^2 x 6 \le 0$.
- **2.** En déduire la résolution dans \mathbb{R} de chacune des inéquations ci-dessous :

a)
$$e^{2x} - e^x - 6 \le 0$$

b) $\ln(x) + \ln(x - 2) \le \ln(6 - x)$.

- **3.** Choisir la bonne réponse parmi les 4 qui vous sont proposées. Un poulailler compte 24 poulets parmi lesquels 25% sont atteints de la grippe aviaire. On prélève au hasard 3 poulets de ce poulailler. La probabilité d'avoir au moins un poulet atteint de la grippe aviaire est égale à :
 - *a*) 0,25

- $b)\frac{c_6^3}{c_{24}^3}$
- $c)\frac{C_{18}^3}{C_{24}^3}$
- d) $\frac{C_{18}^3}{C_{24}^3}$.

EXERCICE 2 (05 points)

On a noté le montant en millions de francs CFA du bénéfice d'une entreprise pendant six années consécutives. Les résultats sont consignés dans le tableau ci-dessous.

Numéro de l'année (x_i)	1	2	3	4	5	6
Bénéfice (y_i)	50	75	120	170	200	240

1. Représenter graphiquement le nuage de points associé à cette série.

Unités: 1 cm en abscisses pour une année et 1 cm en ordonnées pour 50 millions.

- 2. Déterminer le point moyen de cette série.
- 3. Déterminer une équation de la droite de Mayer de la série statistique double $(x_i; y_i)$.
- **4.** En supposant que l'évolution du bénéfice n'est pas modifiée avec le temps, estimer ce bénéfice à la 8ème année.

PROBLÈME (10 points)

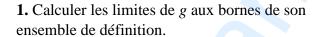
Il comporte deux parties indépendantes A et B.

Partie A (04,5 points)

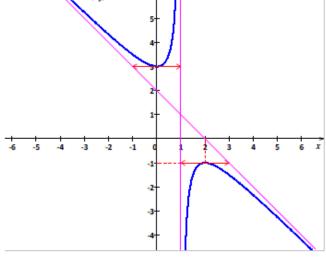
- **1.** Résoudre dans \mathbb{R}^3 le système : $\begin{cases} 2x + y + z = -1 \\ y z = 3 \\ x z = 0 \end{cases}$.
- **2.** Soit (C_f) la courbe représentative ci-dessous d'une fonction f telle que : $f(x) = ax + b + \frac{c}{x-1}$, où a, b et c sont des réels.
- a) Déterminer en utilisant des intervalles l'ensemble de définition D_f de f.
- b) Déterminer à l'aide du graphique les réels f(0), f(2) et f'(0) où f' est la dérivée de f.
- c) Calculer f'(x) en fonction de a, b et x.
- d) Exprimer f(0), f(2) et f'(0) en fonction des réels a, b et c.
- e) Déduire de la question 1. les réels a, b et c.

$\underline{\text{Partie B}} \quad (05,5 \, points)$

Soit la fonction g définie sur $\mathbb{R} - \{1\}$ par $g(x) = \frac{-x^2 + 3x - 3}{x - 1}$ et (C_g) sa courbe représentative dans un repère orthonormé $(O; \vec{i}, \vec{j})$.



- **2.** Étudier les variations de *g* et dresser son tableau de variations.
- **3.** Déterminer les réels a, b et c tels que pour tout réel x distinct de 1, $g(x) = ax + b + \frac{c}{x-1}$.
- **4.** Montrer que la droite (Δ) d'équation y = -x + 2 est asymptote oblique à (C_g).



- **5.** Soit la fonction G définie sur]- ∞ ; 1[par : $G(x) = -\frac{1}{2}x^2 + 2x \ln(1-x) + 6$.
 - a) Calculer G'(x).
 - b) En déduire les primitives de la fonction g sur]- ∞ ; 1[.