Pays : Côte d'IvoireAnnée : 2017Épreuve : MathsExamen : Bac, Séries A2-HDurée : 2 hCoefficient : 2

## **EXERCICE 1**

En 2014, la foire gastronomique d'une commune a enregistré 6 000 visiteurs. Une étude montre que chaque année, 80 % des visiteurs de l'année précédente reviennent tandis que 2 000 nouveaux visiteurs sont enregistrés.

On note  $u_0$  le nombre de visiteurs en 2014 et  $u_n$  le nombre de visiteurs en 2014 + n,  $(n \in \mathbb{N})$ .

- 1. Justifie qu'en 2015 le nombre de visiteurs  $u_1$  est 6 800.
- 2. Calcule le nombre de visiteurs en 2016.
- **3.** On admet que, pour tout entier naturel n,  $\boldsymbol{u_{n+1}} = (0.8) \times \boldsymbol{u_n} + 2.000$ .

On pose, pour tout entier naturel n,  $v_n = u_n - 10000$ .

- a) Démontre que la suite  $(v_n)$  est une suite géométrique de raison 0,8 et de premier terme -4000.
- b) Exprime, pour tout entier naturel n,  $v_n$  en fonction de n.
- c) Justifie que, pour tout entier naturel n,  $u_n = 10\,000 4\,000 \times (0,8)^n$ .

## EXERCICE 2

Une association de jeunes d'un village a organisé en avril 2006, la première édition de la manifestation dénommée « le Beach ». Le Beach a lieu chaque année au même mois.

Le tableau ci-dessous donne le nombre de participants par année de 2006 à 2013.

| Année                    | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
|--------------------------|------|------|------|------|------|------|------|------|
| Rang x de l'année        | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    |
| Nombre y de participants | 160  | 240  | 280  | 320  | 400  | 480  | 560  | 640  |

On désigne par X le caractère « rang de l'année » et par Y le caractère « nombre de participants ».

1. Représente le nuage de points associé à la série statistique double (X, Y) dans le plan muni d'un repère orthonormé (O, I, J). On prendra 1 cm pour une (1) année sur l'axe des abscisses et 1 cm pour 100 participants sur l'axe des ordonnées.

- **2.** *a*) Détermine les coordonnées du point moyen G de cette série.
  - b) Place le point G dans le repère (O, I, J).
- 3. On partage maintenant la série en deux séries de la manière suivante :

Série S<sub>1</sub>

| $x_i$ | 1   | 2   | 3   | 4   |
|-------|-----|-----|-----|-----|
| $y_i$ | 160 | 240 | 280 | 320 |

Série S<sub>2</sub>

| $x_i$ | 5   | 6   | 7   | 8   |  |
|-------|-----|-----|-----|-----|--|
| $y_i$ | 400 | 480 | 560 | 640 |  |

- a) Détermine les coordonnées des points moyens  $G_1$  et  $G_2$  respectivement de  $S_1$  et  $S_2$ .
- b) Justifie qu'une équation de la droite (D) d'ajustement linéaire de la série statistique par la méthode de Mayer est : y = 67,5x + 81,25.
- **4.** En admettant que cette évolution se poursuive, détermine le nombre de participants au Beach d'avril 2019.

## **EXERCICE 3**

Le plan est muni d'un repère orthonormé (O, I, J). L'unité graphique est égale à 2 cm. On donne la fonction f définie sur  $\mathbb{R}$  par :  $f(x) = (-x + 2)e^x$ .

On désigne par (C) la courbe représentative de f dans le plan muni du repère (O, I, J).

- **1.** *a*) Justifie que :  $\lim_{x \to -\infty} f(x) = 0$ .
  - b) Interprète graphiquement le résultat de la question précédente.
- **2.** Justifie que :  $\lim_{x \to +\infty} f(x) = -\infty$ .
- **3.** On suppose que f est dérivable sur  $\mathbb{R}$ .
  - a) Démontre que, pour tout nombre réel x,  $f'(x) = (-x + 1)e^x$ .
  - b) Vérifie que : f'(1) = 0.
  - c) Justifie que f est croissante sur  $]-\infty$ ; 1[ et décroissante sur ]1;  $+\infty$ [.
  - d) Dresse le tableau de variation de f.
- **4.** *a)* Recopie puis complète le tableau ci-dessous.

| х                        | -4  | -3 | -2  | -1 | 0 | 1   | 2 | 2,5  |
|--------------------------|-----|----|-----|----|---|-----|---|------|
| Arrondi d'ordre 1        | 0,1 |    | 0,5 |    |   | 2,7 |   | -6,1 |
| $\operatorname{de} f(x)$ |     |    |     |    |   |     |   |      |

b) Trace la courbe (C) sur l'intervalle [-4; 2,5].

