
Pays: Togo Année: 2016 Session: Sciences Physiques

Série: BAC, Séries C-E **Durée**: 4 h **Coefficient**: 4

EXERCICE 1: SYNTHÈSE ORGANIQUE (04,50 points)

1. L'acétanilide est un principe actif qui a été utilisé pour lutter contre les douleurs et la fièvre sous le nom de : antifibrine, de formule semi-développée ci-contre (**Document 1**).

- a) Donner le nom systématique de l'acétanilide.
- **b**) Retrouver les formules semi-développées et nommer l'acide carboxylique et l'amine dont il est formellement issu.
- **2.** On se propose de synthétiser l'acétanilide. On dispose des produits chimiques suivants : l'acide carboxylique dont est issu l'acétanilide, le benzène C_6H_6 , un déshydratant (P_4O_{10}), l'acide nitrique HNO₃, la limaille de fer, l'acide chlorhydrique HCl et de la soude NaOH.

- **2. 1.** Dans la pratique, la synthèse de l'acétanilide se fait en chauffant au reflux un mélange de l'amine et du dérivé d'acide carboxylique (au lieu de l'acide carboxylique).
 - a) A partir des réactifs initialement disponibles et par une équation chimique, décrire la préparation du dérivé d'acide utilisé. Donner le nom systématique de ce dérivé.
 - b) Pourquoi utilise-t-on le dérivé d'acide carboxylique plutôt que l'acide carboxylique ?

2. 2. Préparation de l'amine

L'aniline (amine utilisée) peut être obtenue par réduction en milieu acide du nitrobenzène C₆H₅-NO₂ par du fer. Le nitrobenzène résulte de l'action de l'acide nitrique sur le benzène.

Protocole: On introduit dans un ballon les masses $m_1 = 40$ g de limaille de fer et $m_2 = 20$ g de nitrobenzène, puis quelques grains de pierre ponce.

On ajoute ensuite V = 120 mL de solution d'acide chlorhydrique de concentration C = 10 mol/L et on adapte un réfrigérant à eau.

Le ballon est ensuite chauffé modérément pendant deux heures. On laisse refroidir puis on ajoute 50 mL de solution de soude à 5 mol/L. On extrait l'aniline formée, le volume obtenu est $V_1 = 12,64$ mL.

- a) Écrire l'équation de synthèse du nitrobenzène. Cette réaction est-elle une addition, une substitution ou une élimination ?
- b) Dans le protocole présenté ci-dessus, il se forme dans un premier temps l'ion anilinium. Écrire les demi-équations d'oxydoréduction pour les couples C₆H₅-NO₂/C₆H₅-NH₃⁺ et Fe²⁺/ Fe. En déduire l'équation-bilan de la réaction qui se produit en milieu acide entre le fer et le nitrobenzène.
- c) La soude introduite en fin de réaction a un double but : éliminer les ions hydronium en excès et transformer les ions anilinium en molécule d'aniline.
 - Écrire l'équation de la réaction de l'ion hydroxyde avec l'ion hydronium d'une part et avec l'ion anilinium d'autre part.
- d) Calculer le rendement de la réaction de synthèse.

2. 3. Préparation de l'acétanilide

On introduit dans un ballon sec, le volume $V_1 = 12,64\,$ mL d'aniline pur recueilli, un volume $V_2 = 12,75\,$ mL du dérivé d'acide carboxylique et un solvant approprié. Après l'expérience, la masse d'acétanilide pur isolé est $m = 16,2\,$ g.

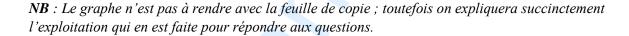
- a) Écrire l'équation-bilan de synthèse de l'acétanilide (On considère que le second produit organique obtenu en même temps que l'acétanilide ne réagit pas avec l'aniline dans les conditions de l'expérience).
- b) Déterminer le rendement de synthèse de l'acétanilide.

Données: - masses molaires en g/mol: M(Fe) = 56; M(H) = 1; M(C) = 12; M(O) = 16; M(N) = 14 - masses volumiques en g/cm³: aniline ($\rho_1 = 1,03$); anhydride éthanoïque ($\rho_2 = 1,08$).

EXERCICE 2 : CINÉTIQUE CHIMIQUE (04,25 points)

Le péroxyde d'hydrogène H₂O₂ connu sous le nom d'eau oxygénée est un agent de blanchiment et de désinfection dans l'industrie pharmaceutique.

En solution aqueuse, l'eau oxygénée se décompose lentement suivant la réaction totale d'équation : $H_2O_2 \rightarrow H_2O + 1/2 \ O_2$ (g).

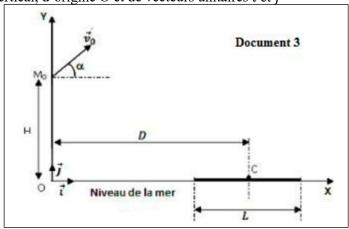

Pour étudier la cinétique de cette réaction, on effectue sur une solution de péroxyde d'hydrogène des prélèvements de volume $V_0 = 10$ mL échelonnés dans le temps et on dose immédiatement l'eau

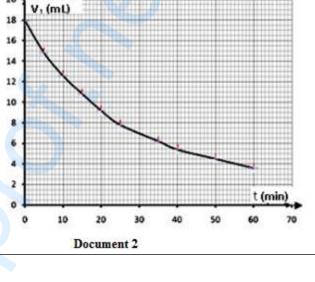
oxygénée restant à l'aide d'une solution acidifiée de permanganate de potassium ($K^+ + MnO_4^-$) de concentration $C_1 = 2,0.10^{-2}$ mol. L^{-1} . On désigne par C_1 la concentration molaire volumique en H_2O_2 à un instant t et C_0 sa concentration initiale.

- **1.** La réaction support du dosage est : $2 \text{ MnO}_4^- + 6 \text{H}_3 \text{O}^+ + 5 \text{H}_2 \text{O}_2 \rightarrow 5 \text{O}_2 + 2 \text{Mn}^{2+} + 14 \text{H}_2 \text{O}$. Montrer que la concentration C en $\text{H}_2 \text{O}_2$ à un instant t et le volume V_1 de la solution de permanganate de potassium versé à l'équivalence sont liés par : $\text{C} = (5 \text{C}_1 \text{V}_1) / (2 \text{V}_0)$.
- 2. Le graphe ci-contre donne les valeurs du volume V₁ de la solution de permanganate de potassium versé à différentes dates pour atteindre l'équivalence (**Document 2**).
- a) Définir la vitesse volumique de disparition v(t) de l'eau oxygénée à l'instant t puis l'exprimer en fonction de V_0 , V_1 et C_1 .
- b) Déterminer, à l'aide de l'expression établie à la question précédente et du graphe, la vitesse de disparition de l'eau oxygénée aux instants $t_0 = 0$ et $t_1 = 25$ min. Justifier le sens de l'évolution de cette vitesse.
- **3.** On admet que la vitesse v(t) est de la forme v(t) = k.C(t), relation où k est une constante positive.
- a) Montrer que la concentration en péroxyde d'hydrogène varie en fonction du temps selon l'expression :

$$C(t) = C_0 e^{-kt}.$$

- **b**) Déduire de la courbe, la valeur de la constante *k*.
- c) Déterminer le temps de demi-réaction $t_{1/2}$ de la décomposition du péroxyde d'hydrogène.




EXERCICE 3 : MOUVEMENT DE PROJECTILE (04,50 points)

1. Un canon lance un projectile de masse m, supposé ponctuel, avec une vitesse initiale $\overrightarrow{v_0}$ faisant un angle α avec l'horizontale à partir d'un point M_0 situé à la hauteur H au-dessus du niveau de la mer. Le mouvement du projectile est étudié dans le repère (OX, OY) de plan vertical, d'origine O et de vecteurs unitaires \vec{i} et \vec{j}

(**Document 3**). L'axe horizontal OX est pris sur le niveau de la mer. Dans toute la suite on néglige l'action de l'air.

- a) Faire le bilan des forces appliquées au projectile puis déterminer les composantes de l'accélération du mouvement.
- **b**) En déduire les composantes du vecteur vitesse \vec{v} du projectile et celles du vecteur position \overrightarrow{OM} à chaque instant t en fonction de v_0 , g et H.
- **2.** Le projectile tombe en un point C centre d'un bateau tel que OC = D.
- a) Trouver l'expression du temps de vol t_1 mis par le

Page 2 sur 4

projectile pour atteindre le point C en fonction de D, v_0 et α .

- b) Donner, en fonction de α , g, H et D, l'expression de v_0 pour qu'il tombe effectivement au point C. Faire l'application numérique.
- c) Établir l'expression de la hauteur maximale h_m atteinte par le projectile par rapport au niveau de la mer en fonction de D, H et α .
- 3. Le projectile est maintenant lancé à partir du point O origine du repère avec un vecteur-vitesse $\overrightarrow{v_0}$. Le bateau a une longueur L et de même direction que OX. Le projectile tombe à une distance $d_1 = \frac{L}{2}$ en deçà de la cible C quand le vecteur vitesse $\overrightarrow{v_0}$ fait un angle α_1 avec l'horizontale. Il tombe à une distance $d_2 = \frac{L}{2}$ au-delà de la cible C quand $\overrightarrow{v_0}$ fait un angle α_2 avec l'horizontale. Le bateau est supposé immobile pendant toute la durée des tirs.
- a) Exprimer la distance d_1 puis d_2 en fonction de D, g, v_0' et l'angle de tir $(\alpha_1 \text{ ou } \alpha_2)$.
- b) En déduire la relation D = $\frac{{v_0'}^2 (\sin 2\alpha_1 + \sin 2\alpha_2)}{2g}$. c) Déterminer en fonction de α_1 et α_2 l'angle θ pour que le projectile atteigne la cible puis calculer sa valeur.

On donne: $g = 10 \text{ m.s}^{-2}$; H = 80 m; $D = 1 \text{ km et } \alpha = 30^{\circ}$; $\alpha_1 = 30^{\circ}$; $\alpha_2 = 45^{\circ}$

EXERCICE 4 : DÉVIATION MAGNÉTIQUE DES PARTICULES ET RADIOACTIVITÉ (06,75 points)

Lors de la formation d'une roche, les compositions isotopiques du strontium (Sr) et du rubidium (Rb) sont :

Strontium	isotopes	⁸⁴ Sr	86 38 Sr	⁸⁷ Sr	88 38
	Composition isotopique	0,56%	9,86%	7,00%	82,58%
Rubidium	isotopes	⁸⁵ ₃₇ Rb	87 37 Rb		
	Composition isotopique	72,16%	27,84%		

Le rubidium 87 est émetteur β^- . Les autres isotopes sont stables.


1. Déviation magnétique des particules

La déviation magnétique des particules électriques possède de nombreuses applications théoriques et pratiques (cyclotrons ; téléviseurs ; filtres de vitesse ; ...).

On se propose de vérifier la composition isotopique d'un échantillon de rubidium naturel. Pour cela, des ions rubidium ${}_{37}^{85}\text{Rb}^+$ et ${}_{37}^{A}\text{Rb}^+$ (avec A > 85) de masses respectives m₁, m₂ sont émis par une chambre d'ionisation (I) avec une vitesse quasi nulle. Ils sont ensuite accélérés dans une chambre d'accélération (II) par une tension U = Vp₁- Vp₂ appliquée entre les plaques P₁ et P₂. Arrivés au point O, ils pénètrent avec des vecteurs vitesses $\overrightarrow{V_1} = V_1 \vec{\imath}$ et $\overrightarrow{V_2} = V_2 \vec{\imath}$ dans une région (III) de l'espace où règnent un vide supposé parfait et un champ magnétique uniforme \vec{B} dirigé selon l'axe Oz mais de sens contraire à \vec{k} ($\vec{B} = -B\vec{k}$). Ces particules subissent la force de LORENTZ.

1. 1. Le poids d'un ion est négligeable devant la force de LORENTZ et les vitesses sont faibles devant celle de la lumière.

- a) Montrer que le mouvement d'un ion de masse m est plan, uniforme et circulaire.
 - b) Établir l'expression de la période T du mouvement d'un ion en fonction de e, B et m (masse de l'ion).
- **1. 2.** Dans le repère $(0, \vec{i}, \vec{j})$:
 - a) Préciser les coordonnées du centre noté Ω du cercle de rayon R décrit par l'ion.

Page 3 sur 4

- **b**) Établir les équations horaires x(t), y(t) et z(t)du mouvement.
- c) En déduire l'équation cartésienne de la trajectoire.
- **d**) Donner l'expression du rayon R en fonction de m; v; e et B.
- **1. 3.** Les jets d'ions sont reçus par deux collecteurs C_1 et C_2 convenablement placés comme l'indique le **Document 4**. Dans le repère $(0, \vec{i}, \vec{j}, \vec{k})$, les abscisses des points C_1 et C_2 sont respectivement $x_1 = 55,56$ cm et $x_2 = 56,21$ cm. La durée du trajet (du point O au collecteur) d'un ion vaut $\frac{T}{4}$.
 - a) Les rayons des trajectoires des ions de masses m_1 , m_2 étant respectivement R_1 et R_2 , exprimer le rapport $\frac{R_1}{R_2}$ en fonction du nombre de masse A de l'isotope ${}_{37}^{A}Rb^+$. Calculer A.
 - **b**) Dans quel collecteur sont reçus les ions de masse m₁? Justifier la réponse.
 - c) En une minute, les quantités d'électricité reçues respectivement par les collecteurs C_1 et C_2 sont : $q_1 = 6.15.10^{-8} C$ et $q_2 = 2.38.10^{-8} C$.

Déterminer la composition isotopique du mélange d'ions. Y a-t-il accord avec les données ?

Données: $m_1 = 85u$; $m_2 = A.u$; $1u = 1,67.10^{-27}$ kg; $e = 1,6.10^{-19}$ C; B = 0,1 T.

2. Étude de la radioactivité du rubidium 87

- 2. 1.
 - a) Écrire la réaction de désintégration de cet isotope.
 - b) Donner la loi de décroissance radioactive d'une population N de noyaux radioactifs.
- **2. 2.** Lors d'un T.P, un professeur met à la disposition des élèves des résultats de mesures de la population N de radioéléments de rubidium en fonction du temps :

t (années) 10 ¹⁰	0	2,45	5,50	9,80	14,70	19,90
N	1200	848,5	551,2	300	150	75

a) Tracer la courbe représentant le nombre de noyaux radioactifs N en fonction du temps. En déduire la période radioactive T (ou demi-vie) du rubidium 87.

Échelles: en abscisses: 1 cm pour 2.10^{10} ans;

en ordonnées: 1 cm pour 100 noyaux radioactifs.

b) Lors de l'exploitation de ces mesures, un élève a obtenu une droite d'équation : $lnN = 7,09 - 1,4146.10^{-11}t$ avec t exprimé en années.

Montrer que l'équation de la droite obtenue est bien en accord avec le résultat précédent.

2. 3. Détermination de l'âge de la roche

On considère un échantillon de roche. On note respectivement $N_1 = N(Sr86)$, $N_2 = N(Sr87)$ et $N_2 = N(Rb87)$ les nombres d'atomes de strontium 86 de strontium 87 et de rubidium 87 présent

 $N_3 = N(Rb87)$ les nombres d'atomes de strontium 86, de strontium 87 et de rubidium 87 présents aujourd'hui dans cet échantillon, puis $N_{01} = N_0(Sr86)$, $N_{02} = N_0(Sr87)$ et $N_{03} = N_0(Rb87)$ les nombres d'atomes de strontium 86, de strontium 87 et de rubidium 87 présents dans cet échantillon lors de sa formation.

- a) Quelle relation existe-t-il entre N_1 et N_{01} ?
- **b)** Exprimer N_2 en fonction de N_{02} , de N_{03} et du temps t.
- c) Exprimer N_2 en fonction de N_{02} , de N_3 et du temps t.
- **d**) On mesure à l'aide d'un spectrographe de masse les rapports $\frac{N_2}{N_1}$ et $\frac{N_3}{N_1}$ dans l'échantillon.

Exprimer $\frac{N_2}{N_1}$ en fonction de $\frac{N_{02}}{N_{01}}$, de $\frac{N_3}{N_1}$ et du temps t.

e) Les valeurs mesurées sont : $\frac{N_2}{N_1} = 0.728$ et $\frac{N_3}{N_1} = 0.407$. Calculer l'âge t de la roche.