UNIVERSITE OUAGA I Pr Joseph KI-ZERBO Office du Baccalauréat

Série D

Année 2019
Session de remplacement
Epreuve du 1^{er} tour
Durée : 4 heures
Coefficient : 5

EPREUVE DE SCIENCES PHYSIQUES

- Les calculatrices scientifiques non programmables sont autorisées.
- Les téléphones portables sont strictement interdits.

Ce sujet comporte quatre (04) pages

CHIMIE (08 points)

Exercice 1 (04 points)

Les expériences sont réalisées à 25°C.

- 1) On dispose d'une solution aqueuse d'acide méthanoïque HCOOH de concentration molaire $C_A = 0.1$ mol. L^{-1} et de pH = 2.4.
 - a) Vérifier que l'acide méthanoïque est un acide faible. (0,25 point)
 - b) Ecrire l'équation-bilan de la réaction de cet acide avec l'eau. (0,25 point)
 - c) Calculer les concentrations molaires de toutes les espèces chimiques présentes dans la solution. En déduire le pKa du couple $HCOOHIHCOO^-$. (1,25 point)
- 2) Dans un bécher, on introduit un volume $V_A = 20$ mL de cet acide. On y ajoute un volume V_B d'une solution aqueuse d'hydroxyde de sodium de concentration molaire $C_B = 0.25$ mol.L⁻¹.
 - a) Calculer le volume V_{BE} de la solution d'hydroxyde de sodium versée à l'équivalence. (0,25 point)
 - b) Le pH de la solution à l'équivalence vaut 8,3. Justifier le caractère basique de la solution. **(0,25 point)**
- 3) a) Déterminer le pH du mélange lorsque l'on a versé 4cm^3 de la solution d'hydroxyde de sodium dans le bécher. (0,25 point)
 - b) Quelle est la particularité de la solution obtenue. Donner ses propriétés. (0,75 point)
- 4) Quand le volume V_B de la solution d'hydroxyde de sodium versée devient très largement supérieur à V_{BE} , Calculer la valeur limite du pH de la solution. (0,25 point)
- 5) Donner l'allure de la courbe représentant les variations du pH en fonction du volume V_B de la solution d'hydroxyde de sodium. Faire apparaître les points remarquables. (0,5 point)

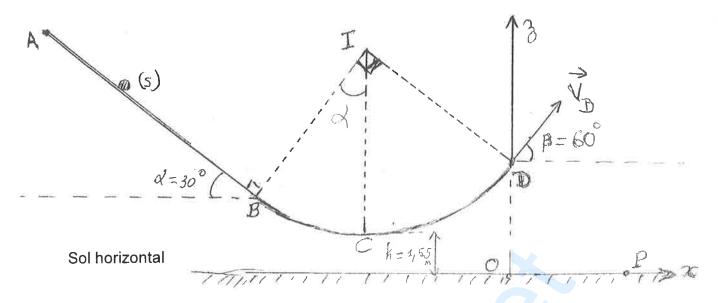
On donne : masses molaires atomiques en $g.mol^{-1}$:

C: 12; H: 1; O: 16

Exercice 2 (04 points)

On dispose des composés organiques suivants notés A, B, C, et D dont les formules chimiques sont consignées dans le tableau suivant :

O CH ₃ - CH - CH ₂ - C CH ₃ OH	B O CH ₃ - CH - CH ₂ - C Ce
C CH ₃ - CH - C O CH-CH ₃ C ₂ H ₅ CH ₃	CH ₃ – CH ₂ - CH – CH ₃


- 1) Nommer les composés organiques A, B, C et D. (1 point)
- 2) Montrer que le composé D est chiral et représenter ses énantiomères. (0,75 point)
- 3) Par oxydation ménagée de D avec une solution de permanganate de potassium en milieu acide, on obtient un produit E qui précipite avec la 2, 4 D.N.P.H et est sans effet sur la liqueur de Fehling.
 - a) Donner la formule semi-développée et le nom de E. (0,5 point)
 - b) Etablir l'équation bilan de la réaction donnant E. (0,75 point)
- 4) A partir du tableau, on peut obtenir de deux manières le composé C.
 - a) Ecrire les équations bilans de ces deux réactions. (0,5 point)
 - b) Donner leurs caractéristiques. (0,5 point)

PHYSIQUE (12 points)

Exercice 1 (04 points)

Dans ce problème on prendra $g=10m/s^2$. Tous les calculs seront effectués à 10^{-2} près.

Un solide (S) de masse m = 50 g de dimensions négligeables peut glisser sur une piste ABCD située dans un plan vertical : (voir figure ci-dessous).

- AB est la ligne de plus grande pente d'un plan incliné d'un angle \propto = 30° par rapport à l'horizontale : AB = 1,6 m.
 - BCD est le quart d'un cercle de centre I et de rayon r = 0.9 m ; C est situé sur la verticale passant par I.
 - 1) On néglige les frottements. (S) part du point A sans vitesse initiale.
 - a) Calculer sa vitesse en B, en C et en D. (1,5 point)
 - b) Calculer l'intensité de la force \vec{R} exercée par la piste sur (S) en C et en D. (1,5 point)
 - 2) On néglige la résistance de l'air. A partir du point D, (S) tombe dans le vide avec la vitesse $\overrightarrow{V_D}$ précédente. Le point C est situé à la hauteur h = 1,55 m du sol horizontal
 - a) Donner l'équation cartésienne de la trajectoire du mouvement de (S) à partir du point D, dans le repère (0; x, z). (0,25 point)
 - b) Jusqu'à quelle hauteur H au-dessous du sol horizontal monte le solide (S) ? (0,5 point)

Exercice 2 (04 points)

Un dipôle R,L,C série est alimenté par un générateur délivrant une tension sinusoïdale de valeur U = 10 V. Le circuit est constitué d'un conducteur ohmique de résistance $R=50\Omega$, d'une bobine d'inductance L = 6.10^{-2} H et de résistance interne nulle et d'un condensateur de capacité C= 1,2 10^{-5} F. L'intensité instantanée dans le circuit est sous la forme $i(t) = I_m \cos{(\omega t)}$ et la tension délivrée aux bornes du générateur est de la forme $u(t) = U_m \cos{(\omega t + \varphi)}$.

- 1) On règle la valeur de la pulsation à $\omega = 1000 \ rad/s$.
 - a. Faire le schéma du montage. (0,5 point)
 - b. Rappeler l'expression de l'impédance Z du dipôle R, L, C série en fonction de R, L,C et ω et calculer la valeur de Z. (0,5 point)
 - c. Calculer l'intensité efficace I du courant dans le circuit. (0,25 point)
 - d. Calculer les tensions efficaces u_R, u_L et u_C respectivement aux bornes du conducteur ohmique, de la bobine et du condensateur. (0,75 point)
- 2) a. Représenter le diagramme de Fresnel à l'aide des tensions U_C , U_L , U_R et U puis faire apparaître la phrase φ de u(t) par rapport à i(t).
- Echelle : 1cm \rightarrow 3V. Calculer φ . (1 point)
 - b. Le circuit est-il capacitif ou inductif ? Justifier. (0,25 point)

- 3) On maintient la tension efficace à 10 V et on fait varier la pulsation puis on relève la valeur de I efficace du courant. La courbe donnant la variation de $I=f(\omega)$ passe par le maximum pour une valeur ω_o de la pulsation.
 - a. A quel phénomène correspond la valeur particulière ω_o ?

b. Calculer la valeur de ω_0 . (0,5 point)

c. Déterminer l'intensité efficace I_0 du courant pour $\omega=\omega_0$. (0,25 point)

Exercice III (04 points)

Un « élément traceur » est un élément, qui par sa radioactivité permet de suivre l'évolution d'une substance, au cours d'un processus physique, chimique ou biologique. On se propose d'étudier la radioactivité de l'isotope mercure $^{203}_{80}H_g$ qui est un traceur isotopique. Cet isotope est radioactif β^- , sa période radioactive est T = 46,69 jours.

- 1) Qu'est-ce que la radioactivité β^- ? (0,5 point)
- 2) Ecrire l'équation de la réaction de désintégration du mercure $^{203}_{80}H_g$. (0,5 point)
- 3) Le nombre de noyaux radioactifs, initialement présents dans un échantillon de cet isotope est N_o = 2,965. 10^{21} noyaux.
- a) Quelle est la masse m_o de cet échantillon à la date $t_o=0$? (0,75 point)
- b) Déterminer l'activité A_o de la source radioactive à la date $t_o=0$? (0,5 point)
- 4) a) Déterminer la durée (en jours) au bout de laquelle l'activité de la source radioactive diminue de 14%. (1 point)
 - b) Quelle sera la masse m restante dans l'échantillon à cette date ? (0,75 point)

Platine	Or	Mercure	Thallium	Plomb	Bismuth	Polonium
₇₈ Pt	₇₉ Au	₈₀ Hg	81 T l	₈₂ Pb	₈₃ Bi	₈₄ Po

Donnée: $\mathcal{N} = 6,02.10^{23} \ mol^{-1}$

Fin