Pays: Côte d'Ivoire Année: 2015 Session: normale, SVT

Série: BAC, série C **Durée**: 3 h **Coefficient**: 2

EXERCICE 1

Pour comprendre l'action de la chaux sur le pH du sol, on réalise les expériences suivantes : sur un sol à pH connu, on ajoute des doses croissantes de chaux vive et on détermine chaque fois le nouveau pH du sol.

Le tableau ci-dessous présente les résultats obtenus.

Quantité de chaux en unités arbitraires (u.a)	0	1	2	3	4	5	6	7	8	9	10
pH du sol	5,6	5,8	6	6,2	6,6	7	7,2	7,4	7,6	8	8,4

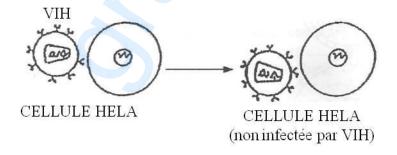
1. Nommez la technique consistant à apporter la chaux vive au sol.

2. Tracez la courbe d'évolution du pH en fonction de la quantité de chaux apportée.

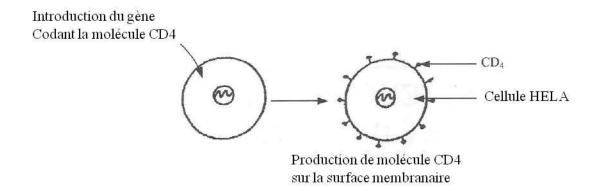
Échelle: 1,5 cm \rightarrow 1 u.a de chaux 2,5 cm \rightarrow 1 unité de pH

3. Analysez la courbe.

4. Expliquez l'effet de la chaux sur le pH du sol.

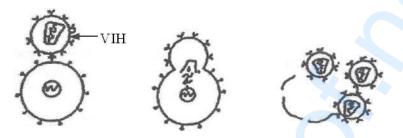

5. Déduisez de ce qui précède le type de sol sur lequel cette technique doit être appliquée.

EXERCICE 2


Pour comprendre le mode d'infection du Lymphocyte T4 (LT4) par le virus du SIDA, des chercheurs ont réalisé les expériences suivantes :

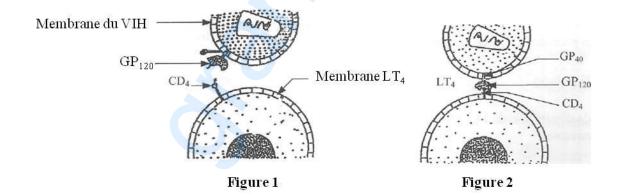
Expérience a : Ils mettent le VIH en contact avec les cellules HELA (cellules cancéreuses de l'utérus).

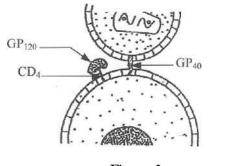
<u>Résultat</u> : II n'y a pas de multiplication du VIH et les cellules HELA sont intactes.



<u>Expérience</u> **b** : Ils introduisent le gène codant pour la molécule CD4 dans les cellules HELA. <u>Résultat</u> : Peu de temps après, celles-ci produisent à la surface de leur membrane la molécule CD4.

Expérience c : Après introduction du gène codant pour la molécule CD4 dans les cellules HELA, les chercheurs les mettent en contact avec le VIH.

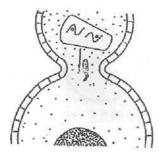

<u>Résultat</u> : II y a multiplication du VIH dans les cellules HELA, puis destruction de cellesci.


MULTIPLICATION DU VIH ET DESTRUCTION DE LA CELLULE HELA

- 1. Analysez les résultats de chacune de ces expériences.
- **2.** Tirez la conclusion quant au mode d'infection des cellules chez une personne contaminée par le VIH.

Le document ci-dessous présente les étapes du processus d'infection du LT4 par le VIH.

Page 2 sur 5



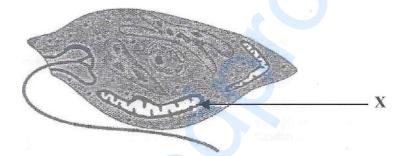

Figure 3

Figure 4

- 3. Légendez les figures de ce document en utilisant les chiffres 1, 2, 3 et 4 correspondant. À un stade de l'infection, une diminution importante du taux de LT4 s'observe chez l'individu infecté. L'analyse de son sang révèle alors une très forte quantité de GP120.
- **4.** Expliquez le rapport entre la quantité élevée de GP120 et l'aggravation de l'infection.

EXERCICE 3

Les Euglènes sont des micro-organismes unicellulaires pourvus de différents organites cellulaires. Leur structure est représentée par la figure ci-dessous.

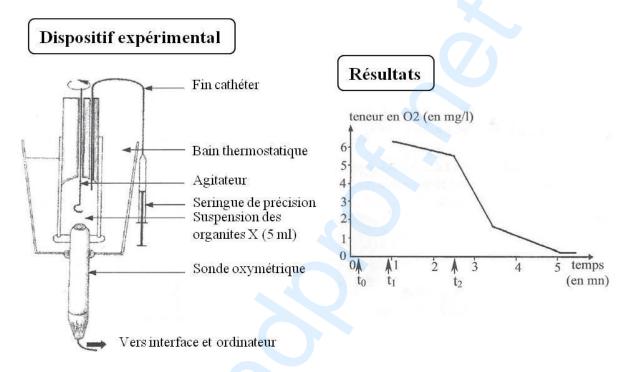
STRUCTURE DE L'EUGLENE

Pour expliquer un aspect du métabolisme conduisant à la production d'énergie chez ces microorganismes, on réalise les expériences suivantes :

Expérience 1

On incube les organites X de ces cellules dans un milieu oxygéné contenant de l'ADP, du phosphate inorganique et un substrat oxydable. On constate alors :

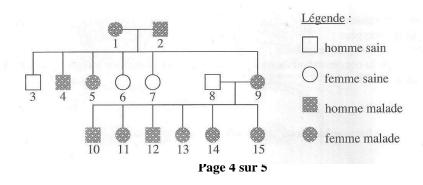
- une oxydation du substrat;
- une absorption d'oxygène;
- un dégagement de dioxyde de carbone ;
- une diminution de la concentration du milieu d'incubation en phosphate inorganique et en ADP ;
- une production d'ATP.
- **1.** Identifiez l'organite X.


2. Traduisez par une équation, les résultats de cette expérience.

Expérience 2

Pour comprendre le rôle des organites X, on réalise l'expérience 2 grâce au dispositif cidessous.

- Au temps t₀ on place dans l'enceinte du bioréacteur uniquement un substrat (succinate) dissout dans une solution tampon.
- Au temps t₁ on ajoute des organites X isolées par centrifugation.
- Au temps t₂ on ajoute 200 micromoles d'ADP.


Les résultats obtenus sont traduits par le graphe de la figure.

- 3. Analysez le graphe de la figure.
- 4. Interprétez-le.

EXERCICE 4

Le document ci-dessous représente l'arbre généalogique d'une famille dont certains membres sont atteints d'une maladie caractérisée par la présence sur le visage de petits nodules colorés.

1.

- a) Montrez par un raisonnement logique que l'allèle de la maladie est dominant ou récessif.
- b) Choisissez les symboles.
- **2.** Démontrez que l'allèle responsable de la maladie est porté par un autosome ou par l'hétérochromosome X.
- **3.** Écrivez les génotypes des individus 1, 2, 4 et 6. Un élève affirme que la femme 9 est hétérozygote.
- **4.** Vérifiez cette affirmation à partir d'un raisonnement logique basé sur un échiquier de croisement.