RÉPUBLIQUE TUNISIENNE MINISTÈRE DE L'ÉDUCATION

....

EXAMEN DU BACCALAURÉAT SESSION 2017

Épreuve : Mathématiques

Section: Sciences expérimentales

Durée: 3h

Coefficient: 3

Session de contrôle

Le sujet comporte 4 pages .La page 4/4 est à rendre avec la copie.

Exercice 1 (5 points)

On munit l'espace d'un repère orthonormé direct (O, i, j, k).

Dans la figure ci-contre OABCGDEF est un cube tel que A(3,0,0); C(0,3,0) et G(0,0,3).

- 1) a) Justifier que E a pour coordonnées (3,3,3) et donner celles de D.
 - b) Déterminer les coordonnées du point Ω milieu de[CD].
- 2) a) Déterminer les composantes du vecteur $\overrightarrow{AE} \wedge \overrightarrow{AG}$.
 - b) Calculer le volume du tétraèdre OAEG.
- 3) On désigne par P le plan passant par les points A, E et G.
 - a) Montrer que la droite (CD) est perpendiculaire au plan P.
 - b) Montrer qu'une équation cartésienne du plan P est x y + z 3 = 0.
- 4) Soit (S) l'ensemble des points M(x, y, z) de l'espace tels que $x^2 + y^2 + z^2 3x 3y 3z + 6 = 0$
 - a) Montrer que (S) est une sphère dont on précisera le centre et le rayon.
 - b) Montrer que (S) et P sont tangents en un point H dont on déterminera les coordonnées.

Exercice 2 (5points)

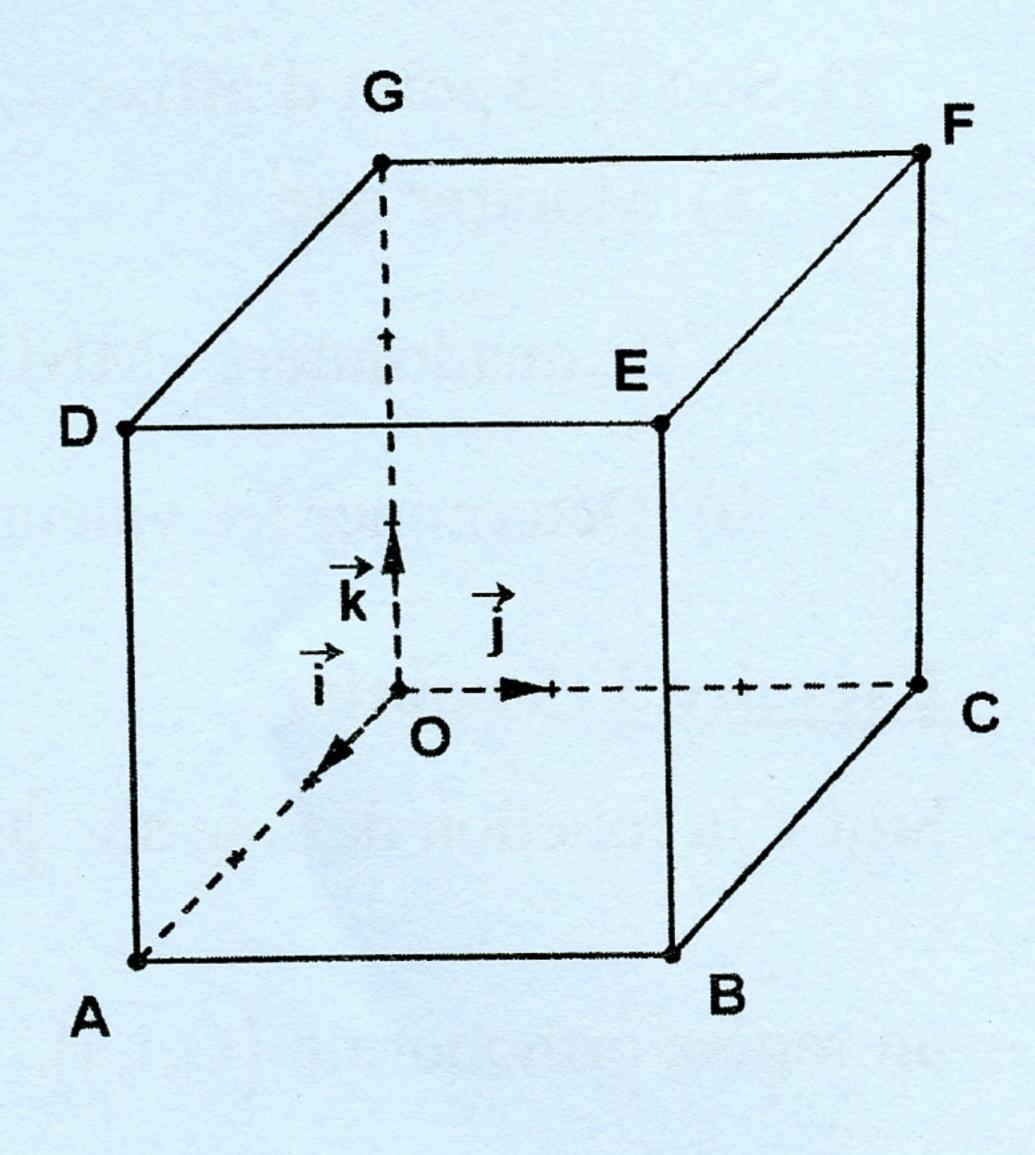
- A/1) a) Justifier que $(\sqrt{2})^3 = 2\sqrt{2}$.
 - b) Déterminer les racines cubiques du nombre complexe $2\sqrt{2}$ i.
 - 2) Le plan est rapporté à un repère orthonormé direct (O, u, v).

Dans la figure de l'annexe ci-jointe :

- (C) est le cercle de centre O et de rayon $\sqrt{2}$.
- A et D sont les points d'affixes respectives $z_A = -\sqrt{2}i$ et $z_D = 2\sqrt{2}i$.
- a) Construire dans l'annexe les points B et C d'affixes respectives

$$z_{\rm B} = \sqrt{2} e^{i\frac{\pi}{6}} \text{ et } z_{\rm C} = \sqrt{2} e^{i\frac{5\pi}{6}}.$$

- b) Vérifier que $z_B = \frac{\sqrt{6}}{2} + i \frac{\sqrt{2}}{2}$ et que $z_C = -\frac{\sqrt{6}}{2} + i \frac{\sqrt{2}}{2}$.
- c) Montrer que (BC) \(\text{AD} \).
- d) Montrer que le quadrilatère ABDC est un losange.



B/ Soit α un nombre complexe non nul. On désigne par M, N et P les points d'affixes $\frac{2\pi}{10^{-2\pi}}$

respectives
$$z_M = \alpha$$
, $z_N = \alpha e^{i\frac{2\pi}{3}}$ et $z_P = \alpha e^{i(-\frac{2\pi}{3})}$.

- 1) a) Calculer z_N^3 et z_P^3 .
 - b) En déduire la nature du triangle MNP.
- 2) Soit Q le point d'affixe $z_0 = \alpha^3$.
 - a) Montrer que

(le quadrilatère MNQP est un losange) équivaut à $(\alpha^3 = -2\alpha)$.

b) Déterminer les valeurs de α pour lesquelles MNQP est un losange.

Exercice 3 (5 points)

Soit f la fonction définie sur $]0,+\infty[$ par $f(x) = \frac{\ln(x)}{\ln(x+1)}$ et (C) sa courbe représentative dans un repère orthonormé (O,\vec{i},\vec{j}) .

- 1) a) Calculer $\lim_{x\to 0^+} f(x)$. Interpréter graphiquement le résultat.
 - b) Vérifier que pour tout réel $x \in]0,+\infty[$, $\ln(x+1)=\ln(x)+\ln(1+\frac{1}{x})$.
 - c) Déduire que $\lim_{x\to +\infty} f(x) = 1$. Interpréter graphiquement le résultat.

2) a) Montrer que pour tout
$$x \in]0,+\infty[$$
, $f'(x) = \frac{x(\ln(x+1) - \ln x) + \ln(x+1)}{x(x+1)\ln^2(x+1)}$.

- b) En déduire que f est strictement croissante sur]0,+ ∞ [.
- c) Dresser le tableau de variation de la fonction f.
- d) Tracer la courbe (C) tout en précisant son intersection avec l'axe des abscisses.
- 3) Montrer que f admet une fonction réciproque f^{-1} définie sur $]-\infty,1[$.
- 4) Pour tout entier naturel $n \ge 2$, on pose $a_n = f^{-1}(\frac{1}{n})$.
 - a) Calculer $\lim_{n\to +\infty} a_n$.
 - b) Montrer que a_n est une solution de l'équation $x^n = x + 1$.
 - c) Calculer $\lim_{n\to +\infty} (a_n)^n$.

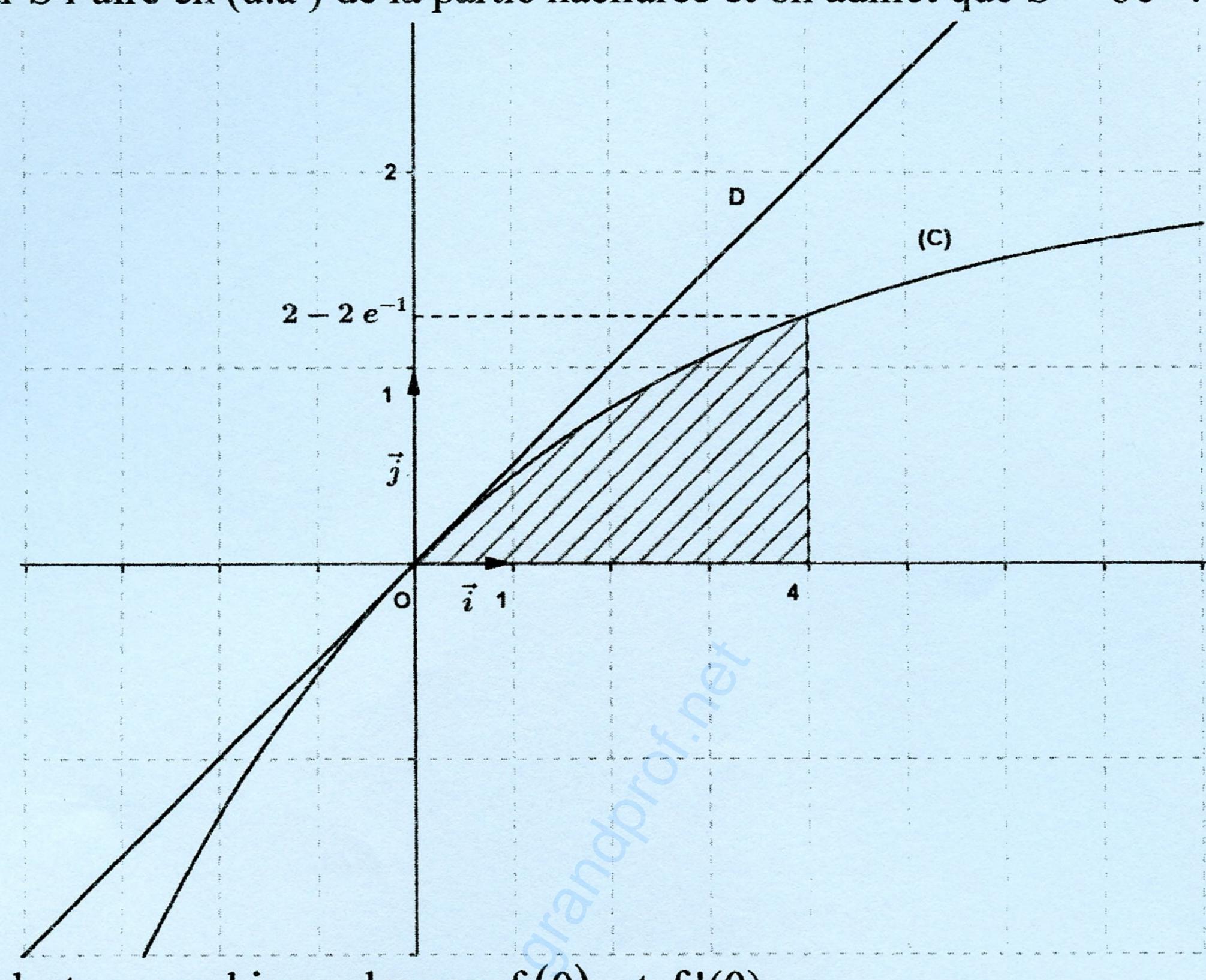
www.grandprof.net

Exercice 4 (5 points)

Dans la figure ci-dessous:

- la courbe (C) est la représentation graphique dans un repère orthogonal $\left(O,\overline{i},\overline{j}\right)$ d'une fonction f solution d'une équation différentielle du type y'=ay+b où $a\in\mathbb{R}^*$ et $b\in\mathbb{R}$.
- . la droite D est la tangente à (C) au point O.
- $f(4) = 2 2e^{-1}$.

On désigne par S l'aire en (u.a) de la partie hachurée et on admet que $S = 8e^{-1}$.



- 1) a) Par une lecture graphique, donner f(0) et f'(0).
 - b) En déduire que $b = \frac{1}{2}$.
- 2) a) Justifier que pour tout réel x, $f(x) = \frac{1}{a} \left(f'(x) \frac{1}{2} \right)$
 - b) En déduire que $S = \frac{-2 e^{-1}}{a}$.
 - c) Montrer alors que a = -0.25.
- 3) Montrer que pour tout réel x, $f(x)=2-2e^{-0.25x}$.
- 4) On admet que la restriction de la fonction f sur l'intervalle [0, +∞[modélise l'évolution de la hauteur d'une certaine espèce de maïs. Autrement dit : si on note h(t) la hauteur en mètres de cette espèce de maïs à l'instant t (exprimé en semaines) alors h(t)=2-2 e^{-0.25 t}.
 - a) Déterminer la hauteur d'une plante de maïs au bout de trois semaines.
 - b) Au cours de quelle semaine la hauteur d'une plante de mais dépassera-t-elle 198 cm?

	Section: N° d'inscription: Série:	Signatures des surveillants
	Nom et Prénom:	
	Date et lieu de naissance:	
X) 	

Épreuve : Mathématiques Section : Sciences expérimentales Annexe à rendre avec la copie

