Correction de l'épreuve de mathématiques (bac Science expérimentales)

Session de contrôle 2018

Exercice n°1:

De quoi s'agit-il?

- Produit vectoriel dans l'espace
- Droites et plans de l'espace
- Sphère, positions relative d'une sphère et d'un plan
- Volume d'un tétraèdre

1. a. On a
$$\overrightarrow{AB} \begin{pmatrix} -1 \\ 3 \\ -1 \end{pmatrix}$$
 et $\overrightarrow{AC} \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$ donc

$$\overrightarrow{AB} \wedge \overrightarrow{AC} = \begin{vmatrix} 3 & -1 \\ -1 & 1 \end{vmatrix} \vec{i} - \begin{vmatrix} -1 & -1 \\ -1 & 1 \end{vmatrix} \vec{j} + \begin{vmatrix} -1 & -1 \\ 3 & -1 \end{vmatrix} \vec{k} = 2\vec{i} + 2\vec{j} + 4\vec{k} \text{ ainsi } \overrightarrow{AB} \wedge \overrightarrow{AC} \begin{pmatrix} 2 \\ 2 \\ 4 \end{pmatrix}$$

b. On a
$$\overrightarrow{AB} \wedge \overrightarrow{AC} \begin{pmatrix} 2 \\ 2 \\ 4 \end{pmatrix}$$
 et $\overrightarrow{AI} \begin{pmatrix} -2 \\ 0 \\ -2 \end{pmatrix}$ donc $V = \frac{1}{6} \left| (\overrightarrow{AB} \wedge \overrightarrow{AC}) . \overrightarrow{AI} \right| = \frac{1}{6} \left| -4 - 8 \right| = 2$

2. Puisque
$$\overrightarrow{AB} \wedge \overrightarrow{AC} \begin{pmatrix} 2 \\ 2 \\ 4 \end{pmatrix}$$
 vecteur normal à P donc $P: 2x + 2y + 4z + d = 0$

On a
$$C(0;0;2) \in P$$
 donc $d = -8$ ainsi $P: x + y + 2z - 4 = 0$

3.

a. On a
$$M(x;y;z) \in S \iff x^2 + y^2 + z^2 + 2x - 2y + 2z - 8 = 0 \iff (x+1)^2 - 1 + (y-1)^2 - 1 + (z+1)^2 - 1 - 8 = 0 \iff (x+1)^2 + (y-1)^2 + (z+1)^2 = 11$$
 donc S est la sphère de centre let de rayon $\sqrt{11}$

b. On a
$$d(I,P) = \frac{\left|-1+1-2-4\right|}{\sqrt{1+1+4}} = \sqrt{6} < \sqrt{11}$$
 donc $P \cap S$ est un cercle de rayon $r = \sqrt{11-6} = \sqrt{5}$

c. On a
$$B \in P$$
 et $C \in P$ et puisque $0^2 + 4^2 + 0^2 + 2 \times 0 - 2 \times 4 + 2 \times 0 - 8 = 0$ donc $B \in S$ et puisque $0^2 + 0^2 + 2^2 + 2 \times 0 - 2 \times 0 + 2 \times 2 - 8 = 0$ donc $C \in S$ de plus $BC = \sqrt{(-4)^2 + 2^2} = 2\sqrt{5}$ donc $[BC]$ est un diamètre du cercle (ς) et ainsi $H = B * C$ d'où $H(0; 2; 1)$

4. a. On a
$$\overrightarrow{AM} = \alpha \overrightarrow{AB}$$
 équivaut à
$$\begin{cases} x_M - 1 = -a \\ y_M - 1 = 3a \text{ équivaut à } \\ z_M - 1 = -a \end{cases} \begin{cases} x_M = 1 - a \\ y_M = 1 + 3a \text{ ainsi } \\ z_M = 1 - a \end{cases}$$

$$M(1-a;1+a;1-a)$$

b. on a
$$\overrightarrow{BM}$$
 $\begin{pmatrix} 1-a \\ 3a-3 \\ 1-a \end{pmatrix}$ et \overrightarrow{CM} $\begin{pmatrix} 1-a \\ 1+3a \\ -1-a \end{pmatrix}$ d'où

$$\overrightarrow{BM}.\overrightarrow{CM} = (1-a)^2 + (3a-3)(1+3a) - (1-a^2) = 11a^2 - 3 - 8a = (a-1)(11a+3)$$

c. On a
$$E \in (AB) \cap (\varsigma) \Leftrightarrow \begin{cases} \overrightarrow{AE} = a\overrightarrow{AB} \\ \overrightarrow{BE}.\overrightarrow{CE} = 0 \end{cases} \Leftrightarrow \begin{cases} \overrightarrow{AE} = a\overrightarrow{AB} \\ (a-1)(11a+3) = 0 \end{cases} \Leftrightarrow \begin{cases} \overrightarrow{AE} = a\overrightarrow{AB} \\ a = 1 \text{ ou } a = -\frac{3}{11} \end{cases}$$

$$\text{pour } a = 1 \text{ on a } E(0;2;0) \text{ or puisque } H(0;2;1) \text{ donc } HE = 1 \neq \sqrt{5} \text{ d'où } E \notin (\varsigma)$$

$$\text{ainsi } a = \frac{-3}{11} \text{ d'où } \overrightarrow{AE} = \frac{-3}{11} \overrightarrow{AB}$$

d. On a
$$V' = \frac{1}{6} \left| \left(\overrightarrow{AE} \wedge \overrightarrow{AC} \right) . \overrightarrow{AI} \right| = \frac{1}{6} \left| \left(\frac{-3}{11} \overrightarrow{AB} \wedge \overrightarrow{AC} \right) . \overrightarrow{AI} \right| = \frac{3}{11} \left| \frac{1}{6} \left| \left(\overrightarrow{AB} \wedge \overrightarrow{AC} \right) . \overrightarrow{AI} \right| \right| = \frac{3}{11} V$$

Exercice n°2:

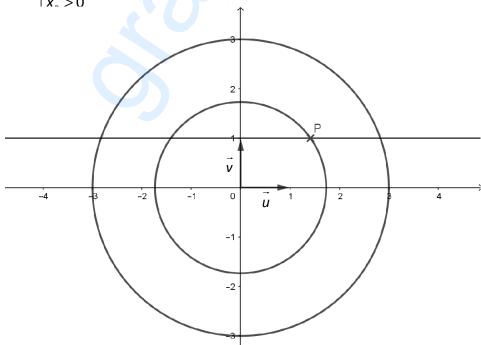
De quoi s'agit-il?

- Résolution d'une équation du second degré dans C
- Complexe et géométrie

ı.

1. a. On a
$$OP = |P| = \sqrt{2+1} = \sqrt{3}$$
 d'où $P \in (C)$

b. On a
$$\begin{cases} y_p = 1 \\ x_p > 0 \end{cases}$$
 et $P \in (C)$ donc $P \in (C) \cap \Delta$: $y = 1$ avec $x_p > 0$ d'où la construction



c. On a
$$\begin{cases} \arg(P) \equiv \alpha [2\pi] \\ |P| = \sqrt{3} \end{cases} \Leftrightarrow P = \sqrt{3}e^{i\alpha}$$

2.

a. On a
$$(\widehat{u}, \widehat{OQ}) \equiv (\widehat{u}, \widehat{OP}) + (\widehat{OP}, \widehat{OQ})[2\pi] \equiv \alpha + \alpha[2\pi] \equiv 2\alpha[2\pi]$$

b. On a
$$Q \in (C')$$
 donc $|q| = 3$ et puisque $\arg(q) \equiv \widehat{(u,OQ)}[2\pi] \equiv 2\alpha[2\pi]$ d'où $q = 3e^{i2\alpha}$

c. On a
$$p^2 = (\sqrt{3}e^{i\alpha})^2 = 3e^{i2\alpha} = q$$
 donc $q = (\sqrt{2} + i)^2 = 2 + 2i\sqrt{2} - 1 = 1 + 2i\sqrt{2}$

II.

1. a. On a
$$\Delta = 64 - 4 \times 16 \times 9 = -512$$
 d'où $\delta = i\sqrt{512} = 16\sqrt{2}i$
d'où $z' = \frac{8 - 16i\sqrt{2}}{32} = \frac{1}{4} - i\frac{\sqrt{2}}{2}$ et $z' = \frac{8 + 16i\sqrt{2}}{32} = \frac{1}{4} + i\frac{\sqrt{2}}{2}$ d'où $z' = \frac{q}{4}$ et $z'' = \frac{q}{4}$

b. On pose $Z = z^2$

On a z solution de (E') équivaut à $Z^2 - 8Z + 9 = 0$ équivaut à $Z = \frac{q}{4}$ ou $Z = \frac{q}{4}$

équivaut à
$$z^2 = \left(\frac{p}{2}\right)^2$$
 ou $z^2 = \frac{\overline{p^2}}{4} = \left(\frac{\overline{p}}{2}\right)^2$

équivaut à
$$z = \frac{p}{2}$$
 ou $z = -\frac{p}{2}$ ou $z = -\frac{p}{2}$ ou $z = -\frac{p}{2}$

Conclusion:
$$S_{\mathbb{C}} = \left\{ \frac{p}{2}; -\frac{p}{2}; \frac{\overline{p}}{2}; -\frac{\overline{p}}{2} \right\}$$

2. $\[\frac{1}{2} \] On a \[M_1 \left(\frac{p}{2} \right) \] , \[M_2 \left(-\frac{p}{2} \right) \] , \[M_3 \left(\frac{p}{2} \right) \] et \[M_4 \left(-\frac{p}{2} \right) \]$ $M_4 \] M_7 \] On a \[M_4 \] M_7 \] On a \[M_4 \] M_7 \] M_8 \] b. On a \[M_1 * M_2 = M_3 * M_4 \] et \[M_1 M_2 = M_3 M_4 = |P| \] donc \[M_1 M_3 M_2 M_4 \] est un rectangle$

Exercice n°3:

De quoi s'agit-il?

- Utiliser un graphique
- Fonction en exponentielle (limites, variations, branches infinies)
- Calcul d'aires
- Fonctions primitives

A. 1. a. On a
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left[(x+1)^2 - xe^x \right] = \lim_{x \to -\infty} x \left[\frac{(x+1)^2}{x} - e^x \right] = +\infty$$
On a $\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{(x+1)^2 - xe^x}{x} = \lim_{x \to -\infty} \left[\frac{(x+1)^2}{x} - e^x \right] = -\infty$

donc (C_f) admet au voisinage de $-\infty$ une branche parabolique de direction (O,\vec{j})

b. On a
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left[(x+1)^2 - xe^x \right] = \lim_{x \to +\infty} x^2 \left[\frac{(x+1)^2}{x^2} - \frac{e^x}{x} \right] = -\infty$$
On a $\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{(x+1)^2 - xe^x}{x} = \lim_{x \to +\infty} x \left[\frac{(x+1)^2}{x^2} - \frac{e^x}{x} \right] = -\infty$

donc (C_f) admet au voisinage de $+\infty$ une branche parabolique de direction (O,\vec{j})

2. a. f est dérivable sur \mathbb{R} et on a pour tout réel x,

$$f'(x) = 2(x+1) - e^x - xe^x = 2(x+1) - e^x(x+1) = (x+1)(2-e^x)$$

b. $f'(x)=0 \Leftrightarrow x=-1 \text{ ou } x=\ln 2 \text{ et on a } 2-e^x>0 \Leftrightarrow e^x<2 \Leftrightarrow x<\ln 2$

d'où	X	8	-1		ln2	+∞
	x+1	ı	0	+		+
	$2-e^{x}$	+		+	0	_
	f'(x)	_	0	+	0	_
	f(x)	+%	e^{-1}	▼	1+(In	2)2

3. a. On a
$$f'(0)=g'(0)=1$$
 et $f(0)=g(0)=1$ d'ou $T:y=x+1$

b. Puisque (Γ) est au dessus de (Δ) donc $e^x - (x+1) \ge 0$ pour tout $x \in \mathbb{R}$

autrement : Soit $h: x \mapsto e^x - (x+1)$, $x \in \mathbb{R}$ h est dérivable sur \mathbb{R} , et on a $h'(x) = e^x - 1$ d'où D'où $h(x) = e^x - (x+1) \ge 0$ pour tout $x \in \mathbb{R}$

X	-8		0	+∞
h'(x)		-	0	+
h(x)	**	_	0´	+∞

4.

- **a.** Pour tout $x \in \mathbb{R}$, $e^x f(x) = e^x (x+1)^2 + xe^x = (x+1)(e^x x 1)$
- **b.** Pour tout $x \in \mathbb{R}$, $(x+1)-f(x) = xe^x x^2 x = x(e^x x 1)$
- c. Pour tout $x \in \mathbb{R}$, $e^x f(x) = (x+1)(e^x (x+1)) = 0 \iff x = -1$ ou x = 0 d'où

Х	-∞	-1	0	+∞
$e^{x}-f(x)$	_	0	+ 0	+

Conclusion : Γ au dessous de (C_f) pour tout $x \in]-\infty;-1[$

 Γ au dessus de (C_f) pour tout $x \in]-1;+\infty[\setminus\{0\}]$

 Γ coupe (C_f) aux points $(-1;e^{-1})$ et (0;1)

Pour tout $x \in \mathbb{R}$, $(x+1)-f(x)=x(e^x-(x+1))=0 \iff x=0$ d'où

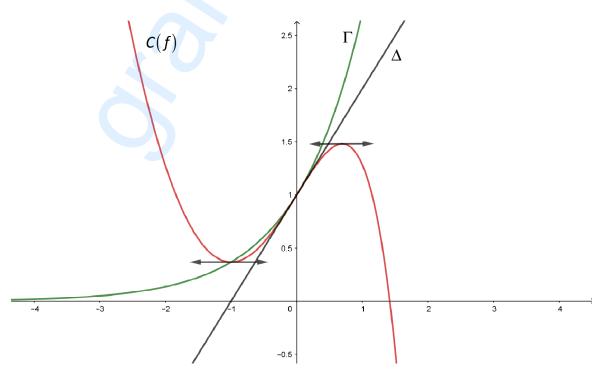
Х	-8	0		+∞
(x+1)-f(x)	_	0	+	

Conclusion : Δ au dessous de (C_f) pour tout $x \in]-\infty;0[$

 Δ au dessus de (C_f) pour tout $x \in]0;+\infty[$

 Γ coupe (C_f) au point (0;1)

5.



6. On a

$$A = \int_{-1}^{0} (g(x) - f(x)) dx = \int_{-1}^{0} e^{x} + xe^{x} - x^{2} - 2x - 1 dx = \left[xe^{x} - \frac{1}{3}x^{3} - x^{2} - x \right]_{-1}^{0}$$
$$= 0 - \left(-\frac{1}{e} + \frac{1}{3} - 1 + 1 \right) = \frac{1}{e} - \frac{1}{3}$$

Exercice n°4:

De quoi s'agit-il?

- Utiliser un graphique
- Fonction $\sqrt[n]{}$
- Suites $u_{n+1} = f(u_n)$ (monotonie, résonnement par récurrence , absurde, convergence)
 - 1. Soit $M(x;y) \in \mathcal{O} \setminus \{O\}$

On a
$$M \in (C) \cap (D) \iff \begin{cases} g(x) = x \\ x > 0 \end{cases} \Leftrightarrow \begin{cases} \sqrt[4]{4x} = x \\ x > 0 \end{cases} \Leftrightarrow x^3 = 4 \Leftrightarrow x = \sqrt[3]{4}$$

d'où α = $\sqrt[3]{4}$

2.

- a. On a $u_0=4$, $u_1=f(4)=1$, $u_2=f(1)=2$ et $u_3=f(2)=\sqrt{2}$ donc $u_1 < u_3 < u_2 < u_0$
- b. Montrons par récurrence que pour tout $n \in \mathbb{N}$, $u_n > 0$

Pour
$$n = 0$$
 on a $u_0 = 4 > 0$

Soit $n \in \mathbb{N}$, on suppose $u_n > 0$ et montrons que $u_{n+1} > 0$

On a
$$u_{n+1} = f(u_n) = \frac{2}{\sqrt{u_n}} > 0$$

Conclusion : pour tout $n \in \mathbb{N}$, $u_n > 0$

c. Soit $n \in \mathbb{N}$, si $u_{n+1} \le u_n$ alors $0 < \sqrt{u_{n+1}} \le \sqrt{u_n}$ d'où $\frac{1}{\sqrt{u_{n+1}}} \ge \frac{1}{\sqrt{u_n}}$ ainsi

$$\frac{2}{\sqrt{u_{n+1}}} \ge \frac{2}{\sqrt{u_n}} \text{ donc } u_{n+2} \ge u_{n+1}$$

d.

Puisque si $u_{n+1} \le u_n$ alors $u_{n+2} \ge u_{n+1}$ donc (u_n) n'est pas décroissante

Et si
$$u_n \le u_{n+1}$$
 alors $0 < \sqrt{u_n} \le \sqrt{u_{n+1}}$ donc $\frac{1}{\sqrt{u_{n+1}}} \le \frac{1}{\sqrt{u_n}}$ d'où $u_{n+2} \le u_{n+1}$

donc (u_n) n'est pas croissante

Conclusion : (u_n) n'est pas monotone

3. Pour tout $x \in [0; +\infty[$

$$f(f(x)) = f\left(\frac{2}{\sqrt{x}}\right) = \frac{2}{\sqrt{\frac{2}{\sqrt{x}}}} = \sqrt{2}\sqrt{\sqrt{x}} = 2^{\frac{2}{4}}x^{\frac{1}{4}} = (4x)^{\frac{1}{4}} = \sqrt[4]{4x} = g(x)$$

- 4.
- a. Pour tout $n \in \mathbb{N}$, $g(v_n) = f(f(u_{2n+1})) = f(u_{2n+2}) = u_{2n+3} = v_{n+1}$ $g(w_n) = f(f(u_{2n})) = f(u_{2n+1}) = u_{2n+2} = w_{n+1}$
- b. Montrons par récurrence que pour tout $n \in \mathbb{N}$, $v_n \le v_{n+1} \le \alpha \le w_{n+1} \le w_n$ Pour n = 0, on a $u_1 < u_3 < \alpha < u_2 < u_0$ d'où $v_0 < v_1 < \alpha < w_1 < w_0$ Soit $n \in \mathbb{N}$, on suppose $v_n < v_{n+1} < \alpha < w_{n+1} < w_n$

montrons que $v_{n+1} < v_{n+2} < \alpha < w_{n+2} < w_{n+1}$

on a $0 < v_n < v_{n+1} < \alpha < w_{n+1} < w_n$ et g croissante sur $[0; +\infty[$ donc $g(v_n) < g(v_{n+1}) < g(\alpha) < g(w_{n+1}) < g(w_n)$ d'où $v_{n+1} < v_{n+2} < \alpha < w_{n+2} < w_{n+1}$ conclusion : pour tout $n \in \mathbb{N}$, $v_n \le v_{n+1} \le \alpha \le w_{n+1} \le w_n$

c. On a (v_n) est une suite croissante et majorée par α donc convergente vers $\ell \in [0;+\infty[$ et puisque $v_{n+1}=g(v_n)$ et g continue sur $[0;+\infty[$ d'où $g(\ell)=\ell$ équivaut à $\ell \in \{0;\alpha\}$ et puisque $v_n \ge v_0 = 1>0$ d'où $\ell>0$ ainsi $\ell=\alpha$

On a (w_n) est une suite décroissante et minorée par α donc convergente vers $\ell \in [0; +\infty[$ et puisque $w_{n+1} = g(w_n)$ et g continue sur $[0; +\infty[$ d'où $g(\ell) = \ell$ équivaut à $\ell \in \{0; \alpha\}$ et puisque et puisque $0 < \alpha \le w_n \le w_0 = 4$ d'où $\ell > 0$ donc $\ell = \alpha$

 $\lim_{n\to +\infty} u_{2n} = \lim_{n\to +\infty} u_{2n+1} = \alpha \text{ équivaut à } \lim_{n\to +\infty} u_n = \alpha$