REPUBLIQUE TUNISIENNE

MINISTERE DE L'EDUCATION

OCOMO

EXAMEN DU BACCALAUREAT

SESSION 2018

Session de contrôle

Epreuve:

Section:
Sciences physiques

Sciences techniques

Coefficient de l'épreuve:3

Le sujet comporte 4 pages numérotées de 1/4 à 4/4.

CHIMIE (7 points) Exercice 1 (3,25 points)

Etude d'un document scientifique

Action d'un acide carboxylique sur un alcool

Les esters sont fréquemment préparés par action directe d'un acide carboxylique sur un alcool:

RCOOH + R'OH

RCOOR' + H,O

Cette réaction a fait l'objet d'une des premières études précises sur les équilibres chimiques en phase liquide. Pour des quantités équimolaires d'acide et d'alcool mises en réaction, le milieu renferme à l'équilibre, une proportion d'ester et d'eau non pas sensible à la nature de l'acide mais à celle de l'alcool. Le taux d'avancement final τ_r de la réaction est de 0,67 pour les alcools primaires, 0,60 pour les alcools secondaires et reste inférieur à 0,10 pour les alcools tertiaires. En pratique, on déplace l'équilibre soit en mettant en réaction un grand excès d'alcool, soit en éliminant l'eau par distillation.

À température ambiante, un mélange équimolaire d'acide et d'alcool met plusieurs mois pour atteindre l'équilibre ; à 100 °C, il faut plusieurs jours.

D'après un extrait d'un article écrit par Jacques METZGER : professeur de chimie organique à la faculté des sciences de Marseille. Encyclopédie Universalis.

- 1- Nommer la réaction évoquée dans ce texte.
- 2- Donner, en le justifiant à partir du texte, deux propriétés caractéristiques de cette réaction.
- 3- En se référant au texte, donner deux procédés permettant d'améliorer le taux d'avancement final de cette réaction.
- 4- a- Montrer que, dans le cas d'un mélange équimolaire d'acide et d'alcool, la constante d'équilibre de la réaction s'exprime par: $K = \left(\frac{\tau_r}{1-\tau_r}\right)^2$.
 - b- Sachant que la constante d'équilibre K vaut 4 pour un alcool primaire et 2,25 pour un alcool secondaire, vérifier les valeurs des τ, données dans le texte pour ces deux classes d'alcool.

Exercice 2 (3,75 points)

À la température de 25 °C, on réalise une pile électrochimique en reliant, à l'aide d'un pont salin, deux demi-piles mettant en jeu les couples Fe²⁺ / Fe et Ni²⁺ / Ni.

Les solutions dans les deux compartiments de la pile ont le même volume V = 100 mL. L'une est une solution aqueuse de sulfate de fer II (FeSO₄) de concentration molaire C_1 et l'autre est une solution aqueuse de sulfate de nickel II (NiSO₄) de concentration molaire C_2 .

L'équation chimique associée à la pile ainsi réalisée est: $Fe + Ni^{2+} \rightleftharpoons Fe^{2+} + Ni$ La constante d'équilibre relative à cette équation est: $K = 10^6$.

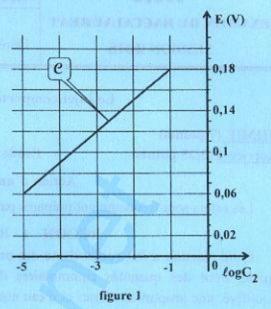
- 1- a- Donner le symbole de la pile ainsi réalisée.
 - b- Montrer que la fem initiale E de cette pile peut s'écrire sous la forme:

$$E = (0.18 - 0.03 \log C_1) + 0.03 \log C_2$$

- 2- On fixe la valeur de C₁; on modifie celle de C₂ et on mesure à chaque fois la valeur de la fem initiale E de la pile correspondante. Les résultats obtenus permettent de tracer la courbe (C) de la figure 1 traduisant l'évolution de E en fonction de logC₂.
 - a- En exploitant la courbe (C), déterminer l'expression de la fem initiale E en fonction de logC,.
 - b- Déduire la valeur de C1.
- 3- Dans ce qui suit on prendra:

$$C_1 = 0.1 \text{ mol.L}^{-1}$$
 et $C_2 = 0.01 \text{ mol.L}^{-1}$

- a- Déterminer la valeur de la fem initiale E de la pile ainsi réalisée.
- b- On laisse la pile débiter du courant dans un circuit extérieur.
 - b₁- Ecrire, en le justifiant, l'équation de la réaction qui se produit spontanément.
 - b₂- Déterminer la concentration des ions Fe²⁺ ainsi que la variation de masse Δm de l'électrode de nickel lorsque la pile ne débite plus du courant.



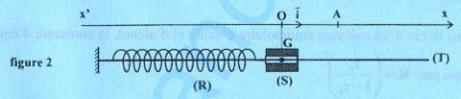
On donne: masse molaire du nickel M(Ni) = 58,7 g.mol-1.

On supposera que le volume de la solution contenue dans chaque compartiment de la pile reste constant et qu'aucune des deux électrodes n'est totalement consommée durant le fonctionnement de la pile.

PHYSIQUE (13 points)

Exercice 1 (4 points)

Un solide (S) de masse m et de centre d'inertie G peut coulisser sans frottements sur une tige horizontale (T). Le solide (S) est accroché à l'une des extrémités d'un ressort (R) à spires non jointives, de masse négligeable et de raideur k. L'autre extrémité du ressort est attachée à un support fixe comme l'indique la figure 2.



À l'équilibre, le centre d'inertie G de (S) coïncide avec l'origine O du repère (O, i) porté par l'axe x'x.

On désigne par x(t) l'élongation de G à un instant de date t dans le repère (O, i) et par v(t) sa vitesse à cet instant.

On écarte le solide (S) de sa position d'équilibre jusqu'au point A d'abscisse $x_A = 2\sqrt{2}$ cm puis on l'abandonne, à l'instant t = 0, avec une vitesse $v_0 > 0$. Le solide (S) se met à osciller de part et d'autre du point O. L'équation différentielle régissant les oscillations de G est : $\frac{d^2x(t)}{dt^2} + \frac{k}{m}x(t) = 0$.

- 1- Sachant que $x(t) = X_{max} \sin\left(\frac{2\pi}{T_0}t + \phi_x\right)$ est une solution de cette équation différentielle, déterminer l'expression de la période propre T_0 des oscillations de G en fonction de K et M.
- 2- a- Donner l'expression de l'énergie mécanique E du système {(S) + (R)} en fonction de k, x, m et v.
 b- Montrer que le système {(S) + (R)} est conservatif.

3- La courbe traduisant l'évolution au cours du temps de l'énergie potentielle Ep(t) du système {(S) + (R)} est donnée par la figure 3.



figure 3

On rappelle que $\mathbf{Ep(t)}$ est périodique de période $T = \frac{T_0}{2}$.

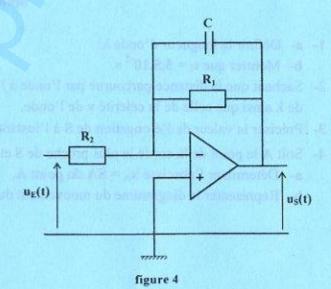
- a- En exploitant la courbe de la figure 3, déterminer la valeur de:
 - la raideur k du ressort ;
 - la période propre T₀. En déduire celle de la masse m du solide (S) ;
 - l'amplitude Xmax des oscillations de G;
 - la vitesse initiale vo.
- b- Déterminer la phase initiale φ, du mouvement de G.

Exercice 2 (5 points)

Le filtre électrique schématisé sur la figure 4, est constitué d'un condensateur de capacité C, de deux conducteurs ohmiques de résistances R₁ et R₂ et d'un amplificateur opérationnel supposé idéal.

À l'entrée de ce filtre, on applique une tension alternative sinusoïdale $\mathbf{u}_{E}(t)$, d'amplitude \mathbf{U}_{Emax} constante et de fréquence \mathbf{N} réglable. À la sortie, on recueille une tension $\mathbf{u}_{S}(t)$, également sinusoïdale, de même fréquence \mathbf{N} que la tension d'entrée et

d'amplitude
$$U_{Smax} = \frac{R_1}{R_2} \frac{U_{Emax}}{\sqrt{1 + (2\pi NR_1C)^2}}$$
.



- 1- a- Définir un filtre électrique.
 - b- Justifier que ce filtre est linéaire.
 - c- Préciser, en le justifiant, si le filtre étudié est actif ou passif.
 - d- Par exploitation de l'expression de $U_{S_{max}}$, indiquer la nature (passe-bas ou passe-haut) de ce filtre.
- 2- a- Montrer que le gain G de ce filtre s'exprime par: $G = G_0 10 log [1 + (2\pi NR_1C)^2]$; où G_0 est la valeur maximale de G que l'on exprimera en fonction de R_1 et R_2 .

 On rappelle que G = 20 log T; où T désigne la transmittance du filtre étudié.
 - b- Rappeler la condition sur G, pour qu'un filtre électrique soit passant.
 - c- En déduire l'expression de la fréquence de coupure N_C de ce filtre.

3- Le suivi expérimental de l'évolution du gain G de ce filtre pour quelques valeurs de la fréquence N de la tension d'entrée, fournit les résultats consignés dans le tableau suivant:

N(Hz)	20	50	100	200	400	700	900	1000	3000	9000
G(dB)										

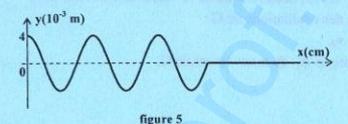
- a- Relever du tableau la valeur de G₀. En déduire celle de N_C.
- b- Déterminer alors les valeurs de R_2 et C. On donne $R_1 = 150 \Omega$.

Exercice 3 (4 points)

Une corde souple et très longue, tendue horizontalement, est attachée par l'une de ses extrémités S à une lame vibrante qui lui communique, à partir de l'instant t = 0, des vibrations verticales sinusoïdales d'équation: $y_s(t) = 4.10^{-3} \sin(100\pi t + \phi_s)$; l'élongation y est exprimée en (m) et le temps t en (s).

On néglige tout amortissement et toute réflexion de l'onde issue de S.

L'aspect de la corde à un instant de date t₁ est donné par la courbe de la figure 5.



- a- Définir la longueur d'onde λ.
 - b- Montrer que $t_1 = 5.5.10^{-2}$ s.
- 2- Sachant que la distance parcourue par l'onde à l'instant de date t₁ est égale à 66 cm, déterminer la valeur de λ ainsi que celle de la célérité v de l'onde.
- 3- Préciser la valeur de l'élongation de S à l'instant de date t₁. En déduire celle de sa phase initiale φ_s.
- 4- Soit A le point de la corde le plus proche de S et vibrant en opposition de phase avec S.
 - a- Déterminer l'abscisse x_A = SA du point A.
 - b- Représenter le diagramme du mouvement du point A.