document téléchargé sur grandprof.net

Powered by www.educamer.org

COLLEGE INTAC B.P. 1973 Douala Année scolaire 2006 / 2007

5ème Séquence

T^{le} C EPREUVE DE MATHÉMATIQUES Durée : 4H

L'épreuve comporte deux exercices et un problème reparti sur deux pages

EXERCICE I:

4,5 PTS

Soit $I_n = \int_1^e (\ln x)^n dx$, $n \in \mathbb{N}^*$.

1. a. Justifier l'existence de I_{n.}

0,25 pt

b. Calculer I₁.

0,75 pt

- c. Démontrer que $\forall n \geq 2$, $\ln = e nl_{n-1}$. (On pourra effectuer une intégration par parties).
- 2. Soit $n \in \mathbb{N}^*$, F_n une primitive sur $[0; +\infty[$ de $f_n : x \mapsto (\ln x)^n$.
 - a. Démontrer $g: t \mapsto F_n(e^t)$ est dérivable sur \mathbb{R} et calculer sa dérivée.

0,25 + 0,5pt

b. en déduire que :

i. $\forall_n \geq \mathbb{N}^*$, $\ln = F_n(e) - F_n(1) = \int_0^1 t^n e^t dt$.

0,75pt

ii. $\forall_n \geq \mathbb{N}^*$, $0 \leq \ln \leq \frac{e}{r+1}$ (on pourra encadrer $t^n e^t$ sur [0,1]).

1 pt

EXERCICE II: 4,5 PTS

On appelle (Γ) l'ensemble des points M du plan dont les coordonnées (x, y) vérifient :

 $X^2 - y^2 + 2xy\sqrt{3} + 2 = 0$

1. On pose $j = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$ ($i^2 = -1$) et on considère la transformation g du plan dans lui-même

Qui à tout point M d'affixe z associe le point M' d'affixe z' = jz.

Déterminer la nature et les éléments caractéristiques de g.

0,75 pt

2. On désigne par (H) l'ensemble des points M d'affixe z vérifiant : $Re(z^2) = 1$.

Déterminer la nature de l'ensemble (H) et le construire.

1 pt

3. Montrer qu'un point M du plan d'affixe z appartient à l'ensemble (Γ)

si et seulement si $Re(jz^2) = 1$.

1 pt

4. Montrer que (H) est l'image de (Γ) par la transformation g.

0,75 pt

5. Déterminer la nature de (Γ) . Tracer (Γ) sur le graphique précédent.

1 pt

PROBLEME: 11 PTS

Le plan est muni d'un repère orthonormé (O,I,J) unité graphique : 2 cm.

PARTIE A

On considère l'équation différentielle (E) : $y' - \frac{1}{2}y = \frac{1}{2}(x - 1)$.

1. Déterminer une fonction affine h solution de (E) .

0,5pt

www.maths.educamer.org

document téléchargé sur grandprof.net

Powered by www.educamer.org

2. Montrer que f est solution de (E) si et seulement si la fonction f – h est solution d'une Equation différentielle (E') que l'on précisera.

0,75 pt

3. Résoudre (E'), puis (E).

 $0,25 \times 2 pt$

4. Déterminer la solution f₀ de (E) qui s'annule en 0.

0,25 pt

PARTIE B:

Soit la fonction f définie sur \mathbb{R} par $f(x) = e^{\frac{1}{2}x} - x - 1$ et (\mathcal{C}) sa courbe représentative dans le repère (0,I,J).

1. Etudier les variations de f.

1,5pt

2. Montrer que l'équation f(x) = 0 admet deux solutions dont une notée α est comprise entre 2 et 3.

0,75 pt

3. Etudier les branches infinies de la courbe ($\mathcal C$) .

0,75 pt

4. Construire (\mathcal{C}).

0,5pt

5. On considère la restriction h de f à]-∞; 2 ln 2[

a. Montrer que h réalise une bijection de]-∞; 2 ln 2 vers un intervalle I à préciser.

0,5pt

b. Calculer (h⁻¹)′(0).

0,25 pt

c. Construire dans le repère précédent la courbe (\mathcal{C}) de $h^{\text{-}1}$

(on tracera la tangente à (\mathcal{C}) au point d'abscisse 0.

0,75 pt

6. On considère la fonction g définie sur $]-1; +\infty[$ par $g(x) = 2\ln(x+1)$.

On se propose dans cette partie de trouver une valeur approchée du réel α de la question 2.

a. Montrer que a est solution de l'équation g(x) = x.

0,25 pt

b. Montrer que pour tout x de $[2; +\infty[$, $g(x) \in [2; +\infty[$ et que $|g'(x)| \le \frac{2}{3}$.

0,25+0,5pt

c. On définie la suite (U_n) par $U_0=3$ et pour tout $n\in I\! N,$ $U_{n+1}=g(U_n).$

i. Montrer que pour tout $n \in \mathbb{N}$, $U_n \in [2; +\infty]$.

0,75 pt

ii. En déduire que pour tout $n \in \mathbb{N}$, $\left| U_{n+1} - \alpha \right| \leq \frac{2}{3} \left| U_n - \alpha \right|$

0,75 pt

iii. En déduire que pour tout $n \in \mathbb{N}$, $|U_n - \alpha| \le \frac{2^n}{3}$

0,5pt

iv. En déduire que la (Un) converge vers une limite que l'on précisera.

0,5pt

v. Déterminer le plus petit entier n_0 tel que U_n soit une valeur approchée de α à 10^{-4} près 0,5pt

www.maths.educamer.org