∽ Entrée École de santé Bron avril 2015 (corrigé) ∾

Durée: 1 heure 30 minutes Coefficient: 3

Avertissement:

- L'utilisation de calculatrice, de règle de calcul, de formulaire et de papier mil limétré n'est pas autorisée.
- · Il ne sera pas fait usage d'encre rouge.
- Il sera tenu compte de la qualité de la présentation des copies et de l'orthographe.
- Les candidats traiteront les trois exercices.
- Les réponses des exercices nº 1 et nº 2 (QCM) seront données sur une grille prévue à cet effet.
- L'exercice nº 3 sera traité sur une copie à part.

EXERCICE 1: 7 points

QCM1:

La limite quand n tend vers $+\infty$:

A. de
$$12n^2 - 7n - 5$$
 vaut -5

$$12n^2 - 7n - 5 = n^2 \left(12 - \frac{7}{n} - \frac{5}{n^2} \right)$$

 $12n^2 - 7n - 5 = n^2 \left(12 - \frac{7}{n} - \frac{5}{n^2}\right)$ On a $\lim_{n \to +\infty} \frac{7}{n} = \lim_{n \to +\infty} \frac{5}{n^2} = 0$, donc par somme de limites :

$$\lim_{n \to +\infty} 12 - \frac{7}{n} - \frac{5}{n^2} = 12 \text{ et comme}:$$

 $\lim_{n \to \infty} n^2 = +\infty$ et par produit de limites :

$$\lim_{n \to +\infty} 12n^2 - 7n - 5 = +\infty.$$

B. de
$$12n^2 - 7n - 5$$
 vaut 0

Cette réponse est également fausse d'après le calcul précédent.

C. de
$$\sqrt{n+3} - \sqrt{n}$$
 vaut 0

$$\sqrt{n+3} - \sqrt{n} = \frac{\left(\sqrt{n+3} - \sqrt{n}\right)\left(\sqrt{n+3} + \sqrt{n}\right)}{\sqrt{n+3} + \sqrt{n}} = \frac{n+3-n}{\sqrt{n+3} + \sqrt{n}} = \frac{3}{\sqrt{n+3} + \sqrt{n}}.$$
 La limite

de ce quotient est clairement 0 : réponse vraie.

D. de
$$\sqrt{n+3} - \sqrt{n}$$
 vaut $\sqrt{3}$

D'après le calcul précédent la réponse est fausse.

QCM 2:

La suite (u_n) définie pour tout n dans \mathbb{N} par $u_n = 3 \times 2^{-n}$ est :

A. croissante

On a $u_n = \frac{3}{2^n}$: cette suite est manifestement positive décroissante vers 0.

B. convergente vers 3

C. convergente vers 0 : réponse vraie.

Terminale S A. P. M. E. P.

D. arithmétique : non géométrique de raison $\frac{1}{2}$.

QCM 3:

Le nombre $A = e^3 (e^{-2})^5$ e peut également s'écrire :

On a
$$A = e^3 e^{-10} e = e^{3-10+1} = e^{-6}$$
.

- **A.** e^{-13}
- $\mathbf{B}. \mathbf{e}^7$
- **C.** e^{-6} : réponse vraie.
- **D.** e^{-30}

QCM 4:

L'équation : $e^{(x^2-2x)} = \frac{1}{e}$ admet, dans \mathbb{R} , pour ensemble de solutions : $e^{(x^2-2x)} = \frac{1}{e} \iff e^{(x^2-2x)} = e^{-1} \iff$ en prenant le logarithme népérien $x^2 - 2x = -1 \iff$ $x^2 - 2x + 1 = 0 \iff (x-1)^2 = 0$: 1 est donc solution double de l'équation.

- **A.** Ø
- **B.** {1}: réponse vraie
- **C.** {1; 2}
- **D.** {0; 2}

QCM 5:

L'inéquation : $e^{\left(1-\frac{x}{5}\right)} > 1$ admet, dans \mathbb{R} , pour ensemble de solutions :

 $e^{\left(1-\frac{x}{5}\right)}>1 \iff e^{\left(1-\frac{x}{5}\right)}>e^0$ soit par croissance de la fonction logarithme népérien

$$1 - \frac{x}{5} > 0 \iff 1 > \frac{x}{5} \iff 5 > x \iff x < 5.$$

- **A.**] $-\infty$; 5[: réponse vraie.
- **B.**]0;5[
- **C.** $]-\infty$; 0[
- **D.** $]\frac{1}{5}$; $+\infty[$

QCM 6:

La limite de $x^2 - x \ln x$ quand x tend vers $+\infty$ vaut :

$$x^2 - x \ln x = x^2 \left(1 - \frac{\ln x}{x} \right).$$

On sait que $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$, donc $\lim_{x \to +\infty} 1 - \frac{\ln x}{x} = 1$ et par produit de limites $\lim_{x \to +\infty} x^2 \left(1 - \frac{\ln x}{x}\right) = +\infty$.

- A ---
- **B.** $+\infty$: réponse vraie.
- **C.** 0
- D. n'existe pas

QCM7:

Terminale S A. P. M. E. P.

Le nombre de solutions de l'équation définie sur $\mathbb{R}_{+}^{*}: 2(\ln x)^{2} + 3\ln x - 5 = 0$ est :

En posant pour x > 0, $\ln x = X$, l'équation s'écrit :

$$2X^2 + 3X - 5 = 0$$
; $\Delta = 3^2 - 4 \times 2 \times (-5) = 9 + 40 = 49 = 7^2$, d'où deux solutions :

$$\frac{-3+7}{4} = X_1 = \ln x_1 = 1, \text{ d'où } x_1 = e;$$

$$\frac{-3-7}{4} = X_2 = \ln x_2 = -\frac{5}{2}, \text{ d'où } x_2 = e^{-\frac{5}{2}}.$$

Ces deux solutions sont positives.

- **A.** 0
- **B.** 1
- C. 2: réponse vraie
- **D.** 3

EXERCICE 2: 7 points

Pour chacune des questions, une seule des quatre affirmations A, B, C ou D est exacte. On demande au candidat d'indiquer sans justification la réponse qui lui paraît exacte en cochant la case sur la grille prévue à cet effet.

Toute réponse juste est comptée +1 point. Toute réponse fausse est comptée -0,25 point. Une absence de réponse est comptée 0 point. Si le total est négatif, la note est ramenée à 0.

QCM 8:

La fonction h définie sur \mathbb{R} par $h(x) = \ln(4 + x^2)$ est dérivable sur \mathbb{R} .

Sa dérivée est la fonction h' définie sur \mathbb{R} par h'(x) =

$$h'(x) = \frac{2x}{x^2 + 4}$$
: la dérivée de $\ln u$ est $\frac{u'}{u}$, avec $u > 0$.

- **A.** $\frac{1}{4+x^2}$
- **B.** $\frac{-2x}{4+x^2}$
- C. $\frac{4+x^{2}}{x^{4}}$
- **D.** $\frac{2x}{4+x^2}$: réponse vraie.

QCM 9 : Une primitive de la fonction f définie sur]0; $+\infty[$ par $f(x)=\frac{2}{x}+e^{3x}$ est : La réponse B est fausse (c'est la dérivée de f(x)); la réponse C également puisque $3e^{3x}$ est la dérivée de e^{3x} et la réponse D aussi puisque l'exposant de l'exponentielle

n'est pas 3. Reste A : on a $F'(x) = 2 \times \frac{3}{3x} + 3e^{3x} = \frac{2}{x} + e^{3x} = f(x)$. La réponse A est correcte.

- **A.** $F(x) = 2\ln(3x) + \frac{1}{3}e^{3x}$
- **B.** $F(x) = -\frac{2}{x^2} + 3e^{3x}$
- **C.** $F(x) = 2\ln(3x) + 3e^{3x}$
- **D.** $F(x) = 2\ln(x) + 3e^{2x}$

Terminale S A. P. M. E. P.

QCM 10:

La forme exponentielle du nombre complexe
$$\frac{-2i}{3+3i}$$
 est :
Soit $z = \frac{-2i}{3+3i}$; on a $z = \frac{-2i(3-3i)}{(3+3i)(3-3i)} = \frac{-6-6i}{9+9} = \frac{-6-6i}{18} = -\frac{1}{3}-i\frac{1}{3}$.

On a donc
$$|z|^2 = \frac{1}{9} + \frac{1}{9} = \frac{2}{9}$$
, d'où $|z| = \frac{\sqrt{2}}{3}$.

On peut écrire
$$z = \frac{9}{3} \left(-\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2} \right) = \frac{3}{3} \left(\cos - \frac{3\pi}{4} + i \sin - \frac{3\pi}{4} \right) = \frac{\sqrt{2}}{3} e^{-\frac{3\pi}{4}}.$$

A.
$$\frac{\sqrt{2}}{6}e^{\frac{i\pi}{4}}$$

B.
$$\frac{-\sqrt{2}}{3}e^{\frac{i\pi}{4}}$$

C.
$$\frac{2}{3}e^{\frac{-3i\pi}{4}}$$

D.
$$\frac{\sqrt{2}}{3}e^{\frac{-3i\pi}{4}}$$
: réponse vraie.

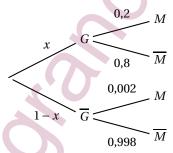
QCM 11:

Une maladie survient chez 1 % des individus d'une population. Quand le sujet est porteur d'un certain génotype G, il a 20 chances sur 100 de développer la maladie.

Quand il ne le porte pas, il a cent fois moins de chance de développer la maladie.

Quelle est la fréquence à 10⁻² près du génotype G?

Avec des notations évidentes on peut dresser l'arbre de probabilités suivant :



On a donc $p(M) = p(G \cap M) + p(\overline{G} \cap M) = 0,2x + 0,002(1 - x) = 0,01$ ou $200x + 2(1-x) = 10 \iff 198x = 8 \iff x = \frac{8}{198} \approx 0,0404.$

La bonne réponse au centième près est 0,04.

- **A.** 0,01
- **B.** 0,02
- **C.** 0,03
- **D.** 0,04 : réponse vraie.

QCM 12:

P est une loi de probabilité sur [1; 10] de densité f définie sur [1; 10] par $f(x) = \lambda x^{-2}$.

On doit avoir
$$\int_{1}^{10} \lambda x^{-2} dx = 1 \iff \int_{1}^{10} \lambda \frac{1}{x^{2}} dx = 1$$
 ou $\left[-\lambda \frac{1}{x} \right]_{1}^{10} = 1$ $\iff -\lambda \frac{1}{10} + \lambda \frac{1}{1} = 1 \iff \frac{9\lambda}{10} = 1 \iff \lambda = \frac{10}{9}$.

Terminale S A. P. M. E. P.

A. $\frac{10}{9}$: réponse vraie.

B.
$$\frac{2}{3}$$

C. 1

D.
$$\frac{4}{3}$$

QCM 13:

A l'évènement « nés Avant terme »

C l'évènement « nés avec Complications »

Évènements A et C incompatibles ssi $p(A \cap C) = 0$

Évènements A et C indépendants ssi $p(A \cap C) = p(A) \times p(C)$

D'après le texte : p(A) = 0,1; p(C) = 0,2 et $p(A \cup C) = 0,26$

 $p(A \cup C) = p(A) + p(C) - p(A \cap C)$ donc $p(A \cap C) = 0.04 \neq 0$; les évènements sont

compatibles

 $p(A) \times p(C) = 0.02 \neq p(A \cap C)$ donc les évènements sont **dépendants**

- A. compatibles et dépendants : réponse vraie.
- B. compatibles et indépendants
- C. incompatibles et dépendants
- D. incompatibles et indépendants

QCM 14:

Les seules possibilités pour l'enfant sont P/p ou p/p puisque l'un des deux parents fournira un gamète p et l'autre P ou p donc deux possibilités équiprobables avec un probabilité de 0.9 d'être malades donne une probabilité de $0.5 \times 0.9 = 0.45$.

- **A.** 0,9
- **B.** 0,45 : réponse vraie
- **C.** 0,23
- **D.** 0,11

EXERCICE 3:

1. **a.** On a $\frac{C_0}{2} = C_0 e^{-kT} \iff \frac{1}{2} = e^{-kT}$, d'où en prenant le logarithme népérien : $-\ln 2 = -kT$, soit $T = \frac{\ln 2}{k}$.

b. On calcule
$$C\left(4\frac{\ln 2}{k}\right) = C_0 e^{-k \times 4\frac{\ln 2}{k}} = C_0 e^{-4\ln 2} = C_0 e^{-\ln 2^4} = C_0 e^{-\ln 16} = \frac{C_0}{e^{\ln 16}} = \frac{C_0}{16}$$
. Or $\frac{1}{16} < \frac{1}{10}$.

Au bout de quatre demi-vies la concentration du médicament est inférieure à 10%.

2. Dans cette question, on considère un patient donné qui absorbe par voie orale un médicament donné. Le principe actif n'est pas immédiatement présent dans le sang.

6 points

Terminale S A. P. M. E. P.

Sa concentration est modélisée par la fonction D définie sur $[0; +\infty[$ par :

$$D(t) = 8 \left[\exp\left(-\frac{t}{100}\right) - \exp\left(-\frac{et}{100}\right) \right]$$

- **a.** On a $\lim_{t \to +\infty} e^{-\frac{t}{100}} = 0$ et $\lim_{t \to +\infty} e^{-\frac{et}{100}} = 0$, donc $\lim_{t \to +\infty} D(t) = 0$. **b.** $D'(t) = 8 \left[-\frac{1}{100} e^{-\frac{t}{100}} + \frac{e}{100} e^{-\frac{et}{100}} \right] = -\frac{8}{100} \left[e^{-\frac{t}{100}} ee^{-\frac{et}{100}} \right] = -\frac{2}{25} e^{-\frac{et}{100}} \left[e^{-\frac{t}{100} + \frac{et}{100}} e \right] = -\frac{2}{100} e^{-\frac{et}{100}} \left[e^{-\frac{t}{100} + \frac{et}{100}} e \right] = -\frac{2}{100} e^{-\frac{et}{100}} \left[e^{-\frac{t}{100} + \frac{et}{100}} e \right] = -\frac{2}{100} e^{-\frac{et}{100}} \left[e^{-\frac{t}{100} + \frac{et}{100}} e \right] = -\frac{2}{100} e^{-\frac{et}{100}} \left[e^{-\frac{t}{100} + \frac{et}{100}} e \right] = -\frac{2}{100} e^{-\frac{et}{100}} \left[e^{-\frac{t}{100} + \frac{et}{100}} e \right] = -\frac{2}{100} e^{-\frac{et}{100}} \left[e^{-\frac{et}{100} + \frac{et}{100}} e \right] = -\frac{2}{100} e^{-\frac{et}{100}} \left[e^{-\frac{et}{100} + \frac{et}{100}} e \right] = -\frac{2}{100} e^{-\frac{et}{100}} \left[e^{-\frac{et}{100} + \frac{et}{100}} e \right] = -\frac{2}{100} e^{-\frac{et}{100}} \left[e^{-\frac{et}{100} + \frac{et}{100}} e \right] = -\frac{2}{100} e^{-\frac{et}{100}} \left[e^{-\frac{et}{100} + \frac{et}{100}} e \right] = -\frac{2}{100} e^{-\frac{et}{100}} \left[e^{-\frac{et}{100} + \frac{et}{100}} e \right] = -\frac{2}{100} e^{-\frac{et}{100}} \left[e^{-\frac{et}{100} + \frac{et}{100}} e \right] = -\frac{2}{100} e^{-\frac{et}{100}} \left[e^{-\frac{et}{100} + \frac{et}{100}} e \right] = -\frac{2}{100} e^{-\frac{et}{100}} \left[e^{-\frac{et}{100} + \frac{et}{100}} e \right] = -\frac{2}{100} e^{-\frac{et}{100}} \left[e^{-\frac{et}{100} + \frac{et}{100}} e \right] = -\frac{2}{100} e^{-\frac{et}{100}} \left[e^{-\frac{et}{100} + \frac{et}{100}} e \right] = -\frac{2}{100} e^{-\frac{et}{100}} \left[e^{-\frac{et}{100} + \frac{et}{100}} e \right] = -\frac{2}{100} e^{-\frac{et}{100}} \left[e^{-\frac{et}{100} + \frac{et}{100}} e \right] = -\frac{2}{100} e^{-\frac{et}{100}} \left[e^{-\frac{et}{100}} e \right] = -\frac{2}{100} e^{-\frac{et}{100}} = -\frac{2}{100} e^{-\frac{et}{100}} = -\frac{2}{100} e^{-\frac{et}{10$ $-\frac{2}{25}e^{-\frac{et}{100}}\left[e^{\frac{t(e-1)}{100}}-e\right].$
- **c.** $D'(t) = \frac{2}{25} \exp\left(-\frac{et}{100}\right) \left[e \exp\left(\frac{t(e-1)}{100}\right)\right].$

Comme $\frac{2}{25}\exp\left(-\frac{\mathrm{e}\,t}{100}\right)>0$ quel que soit le réel t, on a :

$$D'(t) > 0 \iff e - \exp\left(\frac{t(e-1)}{100}\right) > 0 \iff e > \exp\left(\frac{t(e-1)}{100}\right) \iff 1 > \frac{t(e-1)}{100} \iff 1$$

De même $D'(t) < 0 \iff t > \frac{100}{e-1}$.

La fonction D est croissante $\sup[0\,;\,\frac{100}{e-1}]$ et décroissante $\sup[\frac{100}{e-1}\,;\,+\infty[$.

d. La fonction a donc un maximum sur $[0; +\infty[$, $D(\frac{100}{e-1}) = 8 \left| e^{-\frac{1}{e-1} - e^{-\frac{e}{e-1}}} \right| \approx$ 0,079.