

INTELLIGENTSIA COOPORATION TOumpé Intellectual Groups

Plateforme numérique d'accompagnement à l'Excellence Scolaire au Secondaire Groupes opérationnels : 3°, 2ndes AC, Premières ACD TI, Terminales ACD TI, BAC+

DSCHANG, Ouest CMR Contacts: (+237) 672004246 / 696382854 E-mail: toumpeolivier2017@gmail.com

Formation de Zualité, Réussite Assurée avec le N°1 du E-learning !

EVALUATION SOMMATIVE DE FIN DU DEUXIEME TRIMESTRE

Classe : Terminale D Durée : 4heures | Coefficient : 04 | Année Scolaire : 2020/2021

EPREUVE DE MATHEMATIQUES

PARTIE A : EVALUATION DES RESSOURCES 15.5 POINTS

EXERCICE 1 RECURRENCE ET NOMBRES COMPLEXES 04.5 POINTS

1. On considère le polynômes P défini par $P(Z) = Z^3 + Z^2 - 2$

1.1. Montrer que 1 est racine de P(Z) 0.25pt

1.2. Résoudre dans \mathbb{C} l'équation P(Z) = 0 0.75pt

2. On considère les points A, B et C d'affixes respectives : $Z_A=1$; $Z_B=-1+i$; $Z_C=-1-i$

2.1. Construire le triangle *ABC* 0.25pt

2.2. Déterminer l'affixe Z_D du point D telle que ABCD soit un parallélogramme 0.5pt

3. Soit *R* la rotation de centre *A* et d'angle de mesure $\frac{\pi}{3}$

3.1. Montrer que l'expression complexe de R est $Z' = \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)Z + \frac{1}{2} - i\frac{\sqrt{3}}{2}$ 0.75pt

3.2. Soit M et M' les points affixes respectives Z = x + iy et Z' = x' + iy'. Exprimer les coordonnées x' et y' du point M' en fonction de x et y

4. On considère la suite (z_n) définie par $z_0 = \frac{\sqrt{3}}{4} + \frac{3}{4}i$ et $\forall n \in \mathbb{N}, z_{n+1} = -(\sqrt{3} + i)z_n - 1 + i(1 + \sqrt{3})$.

Montrer par récurrence que pour tout entier $n, z_n - i = 2^n e^{i\frac{7n\pi}{6}}(z_0 - i)$

EXERCICE 2 EQUATIONS, INEQUATIONS ET SUITES 05 POINTS

1. Résoudre dans \mathbb{R} : a) $6 - \ln^2 x \le 13 \ln x$ b) $\ln(2x + 8) - \ln(3x + 2) = \ln(x + 1)$ 1.5pt

2. Résoudre dans \mathbb{R}^2 le système suivant : $S = \begin{cases} ln(x^2y^2) = 2ln6 \\ e^x = \frac{1}{e^{1+y}} \end{cases}$ 0.75pt

3. On considère la suite (u_n) de nombres réels positifs définie par : $u_0=e^2$ et $(u_{n+1})^2\times e=u_n$. On pose pour tout entier naturel $n,\ v_n=\frac{1+ln(u_n)}{2}$

3.1. Montrer que v_n est une suite géométrique dont on déterminera la raison et le premier terme 0.75pt

3.2. Exprimer v_n en fonction de n

3.3. En déduire la limite de v_n puis celle de u_n 0.5pt

3.4. On pose $S = v_2 + v_3 + v_4 + \cdots + v_{100}$. Déterminer la valeur exacte de S 0.5pt

EXERCICE 3 FONCTIONS, SUITES ET CALCULS INTEGRALES 06 POINTS

Soit g la fonction définie sur \mathbb{R} par $g(x)=2e^x-x-2$. On pose $w(x)=2(e^x-1)$ et on définit la suite (u_n) par $u_0=-2$ et $u_{n+1}=w(u_n)$ pour tout entier naturel $n\in\mathbb{N}$.

1.	Déterminer les limites de g en $+\infty$ et en $-\infty$	0.5pt
2.	Etudier le sens de variations de en g puis dresser son tableau de variations	0.5pt
3.		
	3.1. Justifier que l'équation $g(x) = 0$ admet exactement deux solutions réelles dont l'une est 0 et l'autre	
	est notée $lpha$	0.5pt
	3.2. Montrer que $g(x) = 0$ équivaut à $w(x) = x$	0.25pt
	3.3. Montrer que $-1.6 < \alpha < -1.59$	0.5pt

3.4. Montrer que $w([-2; -1]) \subset [-2; -1]$ puis en déduire que $u_n \in [-2; -1] \ \forall \ n \in \mathbb{N}$	0.5pt
3.5. Montrer que $\forall x \in [-2; -1]$, $w'(x) \le 0.8$	0.25pt

3.6. Montrer que $\forall n \in \mathbb{N}$, $ u_{n+1} - \alpha \le 0.8 u_n - \alpha $	0.25pt

3.7. En déduire que
$$\forall n \in \mathbb{N}, |u_n - \alpha| \le (0.8)^n$$

0.25pt

3.8. En déduire que la suite
$$(u_n)$$
 converge et déterminer sa limite 0.5pt 3.9. Déterminer un entier n_0 pour que α_{n_0} soit une valeur approchée à 10^{-3} près 0.5pt

4. Déterminer le signe de
$$g(x)$$
 suivant le réel x 0.25pt

5. On page pour tout réel $\theta > 1$, $L = \int_0^\beta (x+1)e^{-2x}dx$. A l'oide d'une intégration per parties déterminer.

5.	On pose pour tout réel $\beta \ge -1$, $I_{\beta} = \int_{-1}^{p} (x+1)e^{-2x} dx$. A l'aide d'une intégration par parties, déte	erminer
	I_eta en fonction de eta	0.75pt

6.	Soit D_{β} le domaine du plan délimité par la courbe (C_h) , la droite (D) et les droites d'équations $x=-1$ et
	$x = \beta$

6.1. Déduire de la ques	stion précédente l'aire notée A	$A_{\mathcal{B}}$ du domaine $D_{\mathcal{B}}$	0.25pt
0 0 0 0 0 0 0 0 0 0 0	p	2 _D a.c. a.ca 2 _D	JJP.

6.2. Déterminer la limite de A_{β} lorsque β tend vers $+\infty$ 0.25pt

PARTIE B: EVALUATION DES COMPETENCES 04.5 POINTS

M. NKENGOUNG possède trois terrains qu'il veut absolument clôturer car il lui est rapporté que des personnes mal intentionnées utilisent ces espaces non occupés à des mauvaises fins. M. NKENGOUNG décide donc d'acheter du fil barbelé pour clôturer ses trois terrains. Le rouleau de 5 mètres de fil barbelé est vendu à 3500F. Le premier terrain est formé de l'ensemble de tous les points M(x,y) du plan complexe verifiant |2iz-1-3i|=8; le deuxième terrain quant à lui est de forme rectangulaire et dont les dimensions sont la partie réelle et la partie imaginaire solution de l'équation : $(1+4i)z+(3-4i)\bar{z}=4-8i$ où \bar{z} est le conjugué de z. Le troisième terrain est formé de l'ensemble des points M d'affixe z du plan complexe tel que $R_e(z)=0$ avec $z=\frac{z}{z+2i}$. N.B : Les distances dans tous ces terrains sont exprimées en décamètre.

Tâches à effectuer :

- 1- Quel est le montant à dépenser par M. NKENGOUNG pour l'achat du fil barbelé permettant de clôturer entièrement le premier terrain ?
 1.5pt
- Quel est le montant à dépenser par M. NKENGOUNG pour l'achat du fil barbelé permettant de clôturer entièrement le deuxième terrain
- 3- Quel est le montant à dépenser par M. NKENGOUNG pour l'achat du fil barbelé permettant de clôturer entièrement le troisième terrain ?

Examinateur: M. NKENGOUNG LEONARD

Université de Dschang / Mathématiques

Formation de Qualité, Réussite Assurée avec le N°1 du E-learning!